from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import WSCDatasetV3 WSC_reader_cfg = dict( input_columns=['span1', 'span2', 'text'], output_column='label', ) WSC_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 'A': dict(round=[ dict( role='HUMAN', prompt='Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnswer: ' ), dict(role='BOT', prompt='A'), ]), 'B': dict(round=[ dict( role='HUMAN', prompt='Passage: {text}\nDoes the pronoun # {span2} # refer to * {span1} *?\nA. Yes\nB. No\nAnswer: ' ), dict(role='BOT', prompt='B'), ]), }, ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) WSC_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) WSC_datasets = [ dict( abbr='WSC', type=WSCDatasetV3, path='./data/SuperGLUE/WSC/val.jsonl', reader_cfg=WSC_reader_cfg, infer_cfg=WSC_infer_cfg, eval_cfg=WSC_eval_cfg, ) ]