from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset RTE_reader_cfg = dict( input_columns=['hypothesis', 'premise'], output_column='label', test_split='train') RTE_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 'entailment': dict(round=[ dict( role='HUMAN', prompt= '{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?' ), dict(role='BOT', prompt='Yes'), ]), 'not_entailment': dict(round=[ dict( role='HUMAN', prompt= '{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?' ), dict(role='BOT', prompt='No'), ]) }, ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) RTE_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) RTE_datasets = [ dict( type=HFDataset, abbr='RTE', path='json', data_files='./data/SuperGLUE/RTE/val.jsonl', split='train', reader_cfg=RTE_reader_cfg, infer_cfg=RTE_infer_cfg, eval_cfg=RTE_eval_cfg, ) ]