from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset COPA_reader_cfg = dict( input_columns=['question', 'premise', 'choice1', 'choice2'], output_column='label', test_split='train') COPA_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 0: dict(round=[ dict( role='HUMAN', prompt='{premise}\nQuestion: What may be the {question}?\nAnswer:'), dict(role='BOT', prompt='{choice1}'), ]), 1: dict(round=[ dict( role='HUMAN', prompt='{premise}\nQuestion: What may be the {question}?\nAnswer:'), dict(role='BOT', prompt='{choice2}'), ]), }, ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) COPA_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) COPA_datasets = [ dict( type=HFDataset, abbr='COPA', path='json', data_files='./data/SuperGLUE/COPA/val.jsonl', split='train', reader_cfg=COPA_reader_cfg, infer_cfg=COPA_infer_cfg, eval_cfg=COPA_eval_cfg, ) ]