from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset CB_reader_cfg = dict( input_columns=['premise', 'hypothesis'], output_column='label', ) CB_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 'contradiction': dict(round=[ dict( role='HUMAN', prompt= '{premise}\n{hypothesis}\nWhat is the relation between the two sentences?' ), dict(role='BOT', prompt='Contradiction'), ]), 'entailment': dict(round=[ dict( role='HUMAN', prompt= '{premise}\n{hypothesis}\nWhat is the relation between the two sentences?' ), dict(role='BOT', prompt='Entailment'), ]), 'neutral': dict(round=[ dict( role='HUMAN', prompt= '{premise}\n{hypothesis}\nWhat is the relation between the two sentences?' ), dict(role='BOT', prompt='Neutral'), ]), }, ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer), ) CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) CB_datasets = [ dict( type=HFDataset, abbr='CB', path='json', split='train', data_files='./data/SuperGLUE/CB/val.jsonl', reader_cfg=CB_reader_cfg, infer_cfg=CB_infer_cfg, eval_cfg=CB_eval_cfg, ) ]