from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset _hint = 'The following are semantic matching questions. \n' \ 'Please determine whether the following two sentences are semantically duplicate: ' \ '0 means not duplicate, 1 means duplicate.\n' QQP_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template='Sentence one: {question1}\nSentence two: {question2}\nResult: {label}', ), prompt_template=dict( type=PromptTemplate, template={ answer: f'{_hint}Sentence one: {{question1}}\nSentence two: {{question2}}\nResult: {answer}' for answer in [0, 1] }, ice_token='', ), retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]), inferencer=dict(type=PPLInferencer)) QQP_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) QQP_datasets = [] for _split in ['validation', 'test']: QQP_reader_cfg = dict( input_columns=['question1', 'question2'], output_column='label', train_split='train', test_split=_split ) QQP_datasets.append( dict( abbr=f'QQP-{_split}', type=HFDataset, path='glue', name='qqp', reader_cfg=QQP_reader_cfg, infer_cfg=QQP_infer_cfg, eval_cfg=QQP_eval_cfg ) )