# flake8: noqa: E501 import csv import json import os import os.path as osp import re from collections import defaultdict from datetime import datetime import numpy as np from mmengine import ConfigDict from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg from .subjective_post_process import post_process_autoj from .utils import get_judgeanswer_and_reference, get_outdir def post_process_flames(judgement: str): """Input a string like below: 分数=3 and extract the score """ matches = re.findall(r'分数=(\d+)', judgement) if matches: matches = matches[0] return int(matches) else: return 0 # using get_outdir to get the results class FlamesSummarizer: """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict, judge_type='general') -> None: self.tasks = [] self.cfg = config # the eval model info is here self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] self.eval_model_abbrs = [ model_abbr_from_cfg(model) for model in self.eval_model_cfgs ] # the judge model info is here self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models']) # to conform the judge_type is right # the judge_type is used to mapping post_process self.judge_type = judge_type assert self.judge_type in ['general'] self.judge_map = {'general': post_process_flames} self.judge_function = self.judge_map[self.judge_type] def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ dataset_cfgs = self.cfg['datasets'] output_dir, results_folder = get_outdir(self.cfg, time_str) all_scores = {} for eval_model_abbr in self.eval_model_abbrs: subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr subdir_path = os.path.join(results_folder, subdir) if os.path.isdir(subdir_path): model, judge_model = eval_model_abbr, self.judge_abbr fout = osp.join(output_dir, 'judged-by--' + judge_model + '.json') for dataset in dataset_cfgs: judged_answers, _ = get_judgeanswer_and_reference( dataset, subdir_path, self.judge_function) dataset_abbr = dataset_abbr_from_cfg(dataset) all_scores[dataset_abbr] = np.mean(judged_answers) all_scores_copy = all_scores all_scores['average'] = float( sum(list( all_scores_copy.values()))) / len(all_scores_copy) else: print(subdir_path + ' is not exist! please check!') print(all_scores) with open(fout, 'w') as f: json.dump(all_scores, f, ensure_ascii=False, indent=4)