from mmengine.config import read_base with read_base(): from opencompass.configs.datasets.subjective.compass_arena_subjective_bench.singleturn.pairwise_judge import compassarena_subjectivebench_singleturn_datasets from opencompass.configs.datasets.subjective.compass_arena_subjective_bench.multiturn.pairwise_judge import compassarena_subjectivebench_multiturn_datasets from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import models as lmdeploy_internlm2_5_7b_chat from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import models as lmdeploy_internlm2_5_20b_chat from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b_instruct import models as lmdeploy_llama3_1_8b_instruct from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_70b_instruct import models as lmdeploy_llama3_1_70b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_0_5b_instruct import models as lmdeploy_qwen2_5_0_5b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_1_5b_instruct import models as lmdeploy_qwen2_5_1_5b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_3b_instruct import models as lmdeploy_qwen2_5_3b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import models as lmdeploy_qwen2_5_7b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_14b_instruct import models as lmdeploy_qwen2_5_14b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_32b_instruct import models as lmdeploy_qwen2_5_32b_instruct from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_72b_instruct import models as lmdeploy_qwen2_5_72b_instruct from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import models as lmdeploy_qwen2_7b_instruct from opencompass.models import (HuggingFace, HuggingFaceCausalLM, HuggingFaceChatGLM3, OpenAI, TurboMindModelwithChatTemplate) from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_num_worker import \ SubjectiveNumWorkerPartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner, SlurmSequentialRunner from opencompass.summarizers import DefaultSubjectiveSummarizer from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask api_meta_template = dict(round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ]) # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models # models = [ # dict( # type=TurboMindModelwithChatTemplate, # abbr='CompassJudger-1-7B-Instruct', # path='opencompass/CompassJudger-1-7B-Instruct', # engine_config=dict(session_len=16384, max_batch_size=16, tp=1), # gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048), # max_seq_len=16384, # max_out_len=2048, # batch_size=16, # run_cfg=dict(num_gpus=1), # ) # ] models = [ *lmdeploy_qwen2_5_14b_instruct, *lmdeploy_qwen2_5_32b_instruct, *lmdeploy_qwen2_5_7b_instruct, *lmdeploy_qwen2_7b_instruct ] datasets = [ *compassarena_subjectivebench_singleturn_datasets, *compassarena_subjectivebench_multiturn_datasets ] # add datasets you want infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)), ) # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration judge_models = [ dict( type=TurboMindModelwithChatTemplate, abbr='CompassJudger-1-32B-Instruct', path='opencompass/CompassJudger-1-32B-Instruct', engine_config=dict(session_len=16384, max_batch_size=16, tp=4), gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048), max_seq_len=16384, max_out_len=2048, batch_size=16, run_cfg=dict(num_gpus=4), ) ] ## ------------- Evaluation Configuration eval = dict( partitioner=dict( type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models, ), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)), ) summarizer = dict(type=DefaultSubjectiveSummarizer, ) work_dir = 'outputs/subjective/'