from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import QuALITYDataset, QuALITYEvaluator from opencompass.utils.text_postprocessors import first_option_postprocess QuALITY_reader_cfg = dict( input_columns=['article', 'question', 'A', 'B', 'C', 'D'], output_column='gold_label', ) QuALITY_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role="HUMAN", prompt= "Read the article, and answer the question.\n\nArticle:\n{article}\n\nQ: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}" ), ])), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer)) QuALITY_eval_cfg = dict( evaluator=dict(type=QuALITYEvaluator), pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'), pred_role='BOT') QuALITY_datasets = [ dict( abbr='QuALITY', type=QuALITYDataset, path='./data/QuALITY/QuALITY.v1.0.1.htmlstripped.dev', reader_cfg=QuALITY_reader_cfg, infer_cfg=QuALITY_infer_cfg, eval_cfg=QuALITY_eval_cfg), ]