from mmengine.config import read_base from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets.OpenHuEval.HuProverbRea import HuProverbDataset2CQ, HuProverb_Evaluator_2CQ with read_base(): from .prompts import INSTRUCTIONS_DIRECT_QA # currently we use English prompts with hu proverbs inserted prompt_template_language = 'en' dataset_path = '/mnt/hwfile/opendatalab/gaojunyuan/shared_data/OpenHuEval/data/HuProverbRea/HuProverbRea_250127' HuProverbRea_reader_cfg = dict(input_columns=['hu_text', 'context', 'en_expl', 'hu_expl', 'option1', 'option2'], output_column='out') HuProverbRea_datasets = [] instruction = INSTRUCTIONS_DIRECT_QA[prompt_template_language] HuProverbRea_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin='', round=[ dict( role='HUMAN', prompt=instruction ), ], ), ice_token='', ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ) HuProverbRea_eval_cfg = dict(evaluator=dict(type=HuProverb_Evaluator_2CQ)) HuProverbRea_datasets.append( dict( abbr=f'HuProverbRea_2CQ_{prompt_template_language}', type=HuProverbDataset2CQ, path=dataset_path, reader_cfg=HuProverbRea_reader_cfg, infer_cfg=HuProverbRea_infer_cfg, eval_cfg=HuProverbRea_eval_cfg, ) )