import json import os.path as osp import sys from datasets import Dataset from sklearn.metrics import classification_report from opencompass.openicl.icl_evaluator import BaseEvaluator from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET from ..base import BaseDataset from .math_equivalence import is_equiv from .post_process import parse_math_answer, parse_qa_multiple_answer import evaluate from nltk.translate.bleu_score import sentence_bleu # from bert_score import score import re from transformers import BasicTokenizer from rouge_chinese import Rouge basic_tokenizer = BasicTokenizer(tokenize_chinese_chars=True) @LOAD_DATASET.register_module() class MedBenchDataset(BaseDataset): @staticmethod def load(path: str, name: str, setting_name: str): from .dataset_loader import load_dataset, load_dataset_as_result_schema assert setting_name in 'zero-shot', 'only support zero-shot setting' dataset_wo_label = load_dataset(name, setting_name, path) dataset_with_label = load_dataset_as_result_schema(name, path) dataset = [] for d1, d2 in zip(dataset_wo_label, dataset_with_label): dataset.append({ 'id': d2.index, 'problem_input': d1['context'], 'label': d2.label, }) dataset = Dataset.from_list(dataset) return dataset @LOAD_DATASET.register_module() class MedBenchDataset_v2(BaseDataset): @staticmethod def load(path: str, name: str, setting_name: str): assert setting_name in 'zero-shot', 'only support zero-shot setting' filename = osp.join(path, name + '.jsonl') with open(filename, encoding='utf-8') as f: data = [json.loads(line.strip()) for line in f] dataset = [] for item in data: passage = item['passage'] if item['passage'] else '' question = passage + item['question'] options = '\n'.join(item['options']) if item['options'] else '' if item['label']: if isinstance(item['label'], list): label = ''.join(item['label']) else: label = item['label'] else: label = item['answer'] d = {'question': question, 'options': options, 'label': label} dataset.append(d) dataset = Dataset.from_list(dataset) return dataset @ICL_EVALUATORS.register_module() class MedBenchEvaluator(BaseEvaluator): def score(self, predictions, references): # predictions: [[]] # references: [[]] predictions = [parse_qa_multiple_answer(pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred': pred, 'answer': ref, 'correct': False} if is_equiv(pred, ref): cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 #输出字典类型 {'score':'', 'details'} return {'Accuracy': score, 'details': details} @ICL_EVALUATORS.register_module() class MedBenchEvaluator_mcq(BaseEvaluator): def score(self, predictions, references): if len(predictions) != len(references): return { 'error': 'predictions and references have different ' 'length' } details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred': pred, 'answer': ref, 'correct': False} if pred == ref: cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'score': score, 'details': details} def process_generated_results_CMeEE(pred_file): structured_output = [] answer_choices = ['药物', '设备', '医院科室', '微生物类', '身体部位', '医疗操作', '医学检验项目', '症状', '疾病'] for pred in pred_file: list_entities = [] for choice in answer_choices: for piece in re.split('[,|.|。|;|\n]', pred): if piece.startswith(f"{choice}"): mentions = piece.replace(f"{choice}实体为", "").replace(f"{choice}实体是", "").replace(f"{choice}实体:", "").split(",") for ment in mentions: list_entities.append({'entity':ment, 'type':choice}) structured_output.append(list_entities) return structured_output def process_generated_results_EMR(pred_file): structured_output = [] answer_choices = ['主诉', '现病史', '既往史', '个人史', '婚育史', '家族史'] for pred in pred_file: list_entities = [] for choice in answer_choices: for piece in re.split('[,|.|?|;|,|。|;|\n]', pred): if piece.startswith(f"{choice}"): mentions = piece.replace(f"{choice}:", "").split(",") mentions = [w.strip() for w in mentions if len(w.strip()) > 0] for ment in mentions: list_entities.append({ment: choice}) structured_output.append(list_entities) return structured_output def process_generated_results_CMeIE(pred_file): structured_output = [] for line in pred_file: gen_output = line # 答案格式: # 每个关系类型占一行,格式为 # "具有{lab}关系的头尾实体对如下:头实体为str,尾实体为str;头实体为str,尾实体为str;" answer_choices = "相关(导致)、鉴别诊断、遗传因素、发病性别倾向、相关(症状)、手术治疗、预防、辅助检查、筛查、阶段、临床表现、风险评估因素、同义词、发病年龄、预后生存率、病史、传播途径、治疗后症状、药物治疗、辅助治疗、化疗、死亡率、放射治疗、病因、组织学检查、内窥镜检查、多发群体、并发症、实验室检查、就诊科室、病理生理、高危因素、发病率、多发地区、病理分型、影像学检查、转移部位、发病部位、相关(转化)、外侵部位、预后状况、发病机制、多发季节" answer_choices = answer_choices.split('、') list_spos = [] assert isinstance(answer_choices, list) list_answer_strs = gen_output.split("\n") for line in list_answer_strs: # 首先是解析出label: predicate = line.split("关系的头尾实体对")[0][2: ].strip() line = line.replace(f"具有{predicate}关系的头尾实体对如下:", "") for spo_str in line.split("。"): if len(spo_str.split(",尾实体为")) < 2: continue head_mention_str, tail_mention_str = spo_str.split(",尾实体为")[:2] head_mention_str = head_mention_str.replace("头实体为", "").strip() tail_mention_str = tail_mention_str.replace("尾实体为", "").strip() list_spos.append( { "predicate": predicate, "subject": head_mention_str, "object": tail_mention_str, } ) structured_output.append(list_spos) return structured_output def process_generated_results_CDN(pred_file): structured_output = [] answer_choices = json.load(open('./data/MedBench/CHIP_CDN/CHIP-CDN_entity.json', 'r')) for line in pred_file: gen_output = line # 答案格式: # 多个选中的标准化实体,用 , 符号分割 answer_str = gen_output.split("\n")[-1] answers = answer_str.split(",") answers = [w.strip() for w in answers if len(w.strip()) > 0] answers = [w for w in answers if w in answer_choices] answers = list(set(answers)) answers = [ { "entity": w, "type": "normalization", } for w in answers ] structured_output.append(answers) return structured_output def process_generated_results_CDEE(pred_file): structured_output = [] for line in pred_file: gen_output = line # 答案格式: # 第一行:引导词 # 每个事件占一行,事件字段用 ; 分隔, 然后每个字段是 字段名:字段值的格式" # 字段值有多个,则用 ,符号分隔 keys = ["主体词", "发生状态", "描述词", "解剖部位"] list_answer_strs = gen_output.split("\n") list_events = [] for ans_str in list_answer_strs: if '主体词' in ans_str: event_info = {} ans_attrs = ans_str.split(";") for a_attr in ans_attrs: for key in keys: if a_attr.startswith(f"{key}:"): a_attr = a_attr.replace(f"{key}:", "").strip() if key in ["描述词", "解剖部位"]: a_attr_split = a_attr.split(",") a_attr_split = [w.strip() for w in a_attr_split if len(w.strip()) > 0] event_info[key] = a_attr_split else: event_info[key] = a_attr for key in keys: if key not in event_info: if key in ["描述词", "解剖部位"]: event_info[key] = [] else: event_info[key] = "" list_events.append(event_info) structured_output.append(list_events) return structured_output def process_generated_results_CTC(pred_file, task_dataset): structured_output = [] for line in pred_file: gen_output = line # 答案格式:直接回答分类标签 answer_str = gen_output.strip() structured_output.append(answer_str) return structured_output def process_generated_results_doc_parsing(pred_file): output = [] for line in pred_file: structured_output = {'体温':'', '脉搏':'', '心率':'', '收缩压':'', '舒张压':'', '呼吸':'', '上腹部深压痛':'', '腹部反跳痛':'', '上腹部肿块':''} sentence_list = line.strip().split(',|。|\n') for sentence in sentence_list: if '体温' in sentence: temp_value = re.search('[0-9]+', sentence) if temp_value: structured_output['体温'] = temp_value.group(0) else: structured_output['体温'] = '未扪及' elif '脉搏' in sentence: temp_value = re.search('[0-9]+', sentence) if temp_value: structured_output['脉搏'] = temp_value.group(0) else: structured_output['脉搏'] = '未扪及' elif '心率' in sentence: temp_value = re.search('[0-9]+', sentence) if temp_value: structured_output['心率'] = temp_value.group(0) else: structured_output['心率'] = '未扪及' elif '收缩压' in sentence: temp_value = re.search('[0-9]+', sentence) if temp_value: structured_output['收缩压'] = temp_value.group(0) else: structured_output['收缩压'] = '未扪及' elif '舒张压' in sentence: temp_value = re.search('[0-9]+', sentence) if temp_value: structured_output['舒张压'] = temp_value.group(0) else: structured_output['舒张压'] = '未扪及' elif '呼吸' in sentence: temp_value = re.search('[0-9]+', sentence) if temp_value: structured_output['呼吸'] = temp_value.group(0) else: structured_output['呼吸'] = '未扪及' elif '上腹部深压痛' in sentence: if re.search('是|存在|有', sentence): structured_output['是否上腹部深压痛'] = '是' else: structured_output['是否上腹部深压痛'] = '否' elif '腹部反跳痛' in sentence: if re.search('是|存在|有', sentence): structured_output['是否腹部反跳痛'] = '是' else: structured_output['是否腹部反跳痛'] = '否' elif '上腹部肿块' in sentence: if re.search('是|存在|有', sentence): structured_output['上腹部肿块'] = '扪及' else: structured_output['上腹部肿块'] = '未扪及' output.append(structured_output) return output def process_generated_results_mrg(pred_file): structured_output = [] answer_choices = ['主诉', '现病史', '既往史', '辅助检查', '诊断'] for pred in pred_file: list_entities = [] for choice in answer_choices: for piece in re.split('[,|.|?|;|,|。|;|\n]', pred): if piece.startswith(f"{choice}实体"): mentions = piece.replace(f"{choice}实体:", "").split(",") mentions = [w.strip() for w in mentions if len(w.strip()) > 0] for ment in mentions: list_entities.append({ment: choice}) structured_output.append(list_entities) return structured_output def calc_info_extract_task_scores(list_structured_golden, list_structured_predict): assert len(list_structured_golden) == len(list_structured_predict) tp = 0 fp = 0 fn = 0 for samp_golden, samp_predict in zip(list_structured_golden, list_structured_predict): answer_golden = samp_golden answer_predict = samp_predict assert isinstance(answer_golden, list) assert isinstance(answer_predict, list), "sample format is wrong!" set_golden = set() for inst in answer_golden: assert isinstance(inst, dict) keys = sorted(list(inst.keys())) inst = tuple([json.dumps(inst[w], ensure_ascii=False) for w in keys ]) # inst = list(inst.items()) # inst.sort() # inst = tuple(inst) set_golden.add(inst) set_predict = set() for inst in answer_predict: assert isinstance(inst, dict) keys = sorted(list(inst.keys())) # inst = tuple([inst[w] for w in keys]) inst = tuple([json.dumps(inst[w], ensure_ascii=False) for w in keys]) # inst = list(inst.items()) # inst.sort() # inst = tuple(inst) set_predict.add(inst) # print("set_predict: ", set_predict) # print("set_golden: ", set_golden) tp += len(set_golden.intersection(set_predict)) fp += len(set_predict.difference(set_golden)) fn += len(set_golden.difference(set_predict)) if tp: precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * precision * recall / (precision + recall) else: precision, recall, f1 = 0, 0, 0 return precision, recall, f1 def calc_cls_task_scores(list_structured_golden, list_structured_predict, list_labels=None, return_macro=False, ): # types = list_labels # scores = {c: {"tp": 0, "fp": 0, "fn": 0, "tn": 0} for c in list_labels + ["ALL"]} predictions = [] ground_truths = [] # Count GT relations and Predicted relations assert len(list_structured_golden) == len(list_structured_predict) n_sents = len(list_structured_golden) # Count TP, FP and FN per type for pred_samp, gt_samp in zip(list_structured_predict, list_structured_golden): pred_label = pred_samp gt_label = gt_samp assert gt_label != "" if pred_label == "": pred_label = list_labels[0] predictions.append(pred_label) ground_truths.append(gt_label) # metric cls_report = classification_report( ground_truths, predictions, output_dict=True, zero_division=0, ) if return_macro: return cls_report["macro avg"]["precision"], \ cls_report["macro avg"]["recall"], \ cls_report["macro avg"]["f1-score"] else: return cls_report["weighted avg"]["precision"], \ cls_report["weighted avg"]["recall"], \ cls_report["weighted avg"]["f1-score"] def calc_nlg_task_scores(list_structured_golden, list_structured_predict): assert len(list_structured_golden) == len(list_structured_predict) scores = [] predictions = [] references = [] details = [] for samp_golden, samp_predict in zip(list_structured_golden, list_structured_predict): # print("samp_golden: ", samp_golden) # print("samp_predict: ", samp_predict) # assert samp_golden["sample_id"] == samp_predict["sample_id"], "sample ordering is wrong!" answer_golden = samp_golden answer_predict = samp_predict print('#') print(answer_golden) print(answer_predict) if not (answer_predict and answer_golden): continue # basic tokenizer: 拆分中文字,保留英文单词 answer_predict = basic_tokenizer.tokenize(answer_predict) answer_golden = basic_tokenizer.tokenize(answer_golden) answer_predict = " ".join(answer_predict).strip() answer_golden = " ".join(answer_golden).strip() if answer_golden.strip() == "": answer_golden = "无 。" if answer_predict.strip() == "": answer_predict = "无 。" # print("answer_predict: ", answer_predict) # print("answer_golden: ", answer_golden) predictions.append(answer_predict) references.append(answer_golden) details.append({'pred':answer_predict, 'answer':answer_golden, 'correct':False}) rouge = Rouge() # bleu = evaluate.load('sacrebleu') scores = rouge.get_scores(predictions, references, avg=True) # scores_bleu = bleu.compute(predictions=predictions, references=references) rouge1 = scores["rouge-1"]["f"] rouge2 = scores["rouge-2"]["f"] rougeL = scores["rouge-l"]["f"] # bleu = sentence_bleu(references, predictions) # bert_score = [] # for id in range(len(predictions)): # P, R, F1 = score([predictions[i]], [references[i]], model_type='bert-base-chinese', lang="zh", verbose=True) # bert_score.append(F1) # bert_score = float(sum(bert_score)) / float(len(bert_score)) # return rougeL, bleu, bert_score return {'RougeL': rougeL, 'details':details} def calc_scores_f1(dict_gt, dict_pred): details = [] for gt, pred in zip(dict_gt, dict_pred): details.append({'pred':pred, 'answer':gt, 'correct':None}) precision, recall, f1 = calc_info_extract_task_scores(dict_gt, dict_pred) return {'F1':f1, 'details':details} def calc_scores_ctc(dict_gt, dict_pred): details = [] for gt, pred in zip(dict_gt, dict_pred): details.append({'pred':pred, 'answer':gt, 'correct':None}) gts = dict_gt preds = dict_pred precision, recall, f1 = calc_cls_task_scores( gts, preds, list_labels=['非上述类型', '疾病', '症状(患者感受)', '体征(医生检测)', '怀孕相关', '肿瘤进展', '疾病分期', '过敏耐受', '器官组织状态', '预期寿命', '口腔相关', '药物', '治疗或手术', '设备', '护理', '诊断', '实验室检查', '风险评估', '受体状态', '年龄', '特殊病人特征', '读写能力', '性别', '教育情况', '居住情况', '种族', '知情同意', '参与其它试验', '研究者决定', '能力', '伦理审查', '依存性', '成瘾行为', '睡眠', '锻炼', '饮食', '酒精使用', '性取向', '吸烟状况', '献血', '病例来源', '残疾群体', '健康群体', '数据可及性', "含有多个类别"], return_macro=True, ) return {'Macro-F1':f1, 'details':details} def calc_scores_nlg(dict_gt, dict_pred): # scores = {} scores = {'score':0, 'details':[]} success_flag = 1 gts = dict_gt preds = dict_pred # if not len(gts) == len(preds): # success_flag = 0 # try: return calc_nlg_task_scores(gts, preds) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CMeEE(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CMeEE(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_EMR(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_EMR(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_MRG(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_mrg(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CMeIE(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CMeIE(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CHIP_CDEE(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CDEE(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CHIP_CDN(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CDN(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_CHIP_CTC(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_CTC(predictions) return calc_scores_ctc(predictions, references)[0] @ICL_EVALUATORS.register_module() class MedBenchEvaluator_Doc_parsing(BaseEvaluator): def score(self, predictions, references): predictions = process_generated_results_doc_parsing(predictions) return calc_scores_f1(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_NLG(BaseEvaluator): def score(self, predictions, references): # predictions = process_generated_results_med(predictions) return calc_scores_nlg(predictions, references) @ICL_EVALUATORS.register_module() class MedBenchEvaluator_Cloze(BaseEvaluator): def score(self, predictions, references): # predictions: [[]] # references: [[]] # predictions = [parse_qa_multiple_answer(pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): detail = {'pred':pred, 'answer':ref, 'correct':False} if sum([item in pred for item in ref]) == len(ref): cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'Accuracy': score, 'details': details} @ICL_EVALUATORS.register_module() class MedBenchEvaluator_TF(BaseEvaluator): def score(self, predictions, references): # predictions: [[]] # references: [[]] # predictions = [parse_qa_multiple_answer(pred) for pred in predictions] details = [] cnt = 0 for pred, ref in zip(predictions, references): if '不' in pred or '否' in pred: cur_pred = '不可以' else: cur_pred = '可以' detail = {'pred':cur_pred, 'answer':ref, 'correct':False} if cur_pred == ref: cnt += 1 detail['correct'] = True details.append(detail) score = cnt / len(predictions) * 100 return {'Accuracy': score, 'details': details}