# dataloader settings val_pipeline = [ dict(type='mmpretrain.torchvision/Resize', size=(224, 224), interpolation=3), dict(type='mmpretrain.torchvision/ToTensor'), dict(type='mmpretrain.torchvision/Normalize', mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)), dict(type='mmpretrain.PackInputs', algorithm_keys=[ 'question', 'category', 'l2-category', 'context', 'index', 'options_dict', 'options', 'split' ]) ] dataset = dict(type='opencompass.MMBenchDataset', data_file='data/mmbench/mmbench_test_20230712.tsv', pipeline=val_pipeline) minigpt_4_dataloader = dict(batch_size=1, num_workers=4, dataset=dataset, collate_fn=dict(type='pseudo_collate'), sampler=dict(type='DefaultSampler', shuffle=False)) # model settings minigpt_4_model = dict( type='minigpt-4-mmbench', low_resource=True, llama_model='/path/to/vicuna', sys_prompt= # noqa: E251 '###Human: What is the capital of China? There are several options:\nA. Beijing\nB. Shanghai\nC. Guangzhou\nD. Shenzhen\n###Assistant: A\n' ) # evaluation settings minigpt_4_evaluator = [ dict(type='opencompass.DumpResults', save_path='work_dirs/minigpt-4-7b-mmbench.xlsx') ] minigpt_4_load_from = '/path/to/minigpt-4' # noqa