from os import getenv as gv from opencompass.models import HuggingFaceCausalLM from mmengine.config import read_base with read_base(): from .models.chatglm.hf_chatglm3_6b_32k import models as chatglm3_6b_32k_model from .models.yi.hf_yi_6b_chat import models as yi_6b_chat_model from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI from opencompass.models.openai_api import OpenAIAllesAPIN from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner from opencompass.runners import SlurmSequentialRunner from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask from opencompass.summarizers import CompassArenaSummarizer infer = dict( #partitioner=dict(type=NaivePartitioner), partitioner=dict(type=SizePartitioner, max_task_size=10000), runner=dict( type=SlurmSequentialRunner, partition='llm_dev2', quotatype='auto', max_num_workers=256, task=dict(type=OpenICLInferTask)), ) api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ] ) gpt4 = dict( abbr='gpt4-turbo', type=OpenAI, path='gpt-4-1106-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=4096, batch_size=4, retry=20, temperature = 1 ) models = [*chatglm3_6b_32k_model, *yi_6b_chat_model] datasets = [*subjective_datasets] work_dir = 'outputs/compass_arena/' # -------------Inferen Stage ---------------------------------------- judge_model = dict( abbr='GPT4-Turbo', type=OpenAI, path='gpt-4-1106-preview', key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=1024, max_seq_len=4096, batch_size=2, retry=20, temperature = 0 ) ## ------------- Evaluation Configuration eval = dict( partitioner=dict( type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='m2n', base_models = [gpt4], compare_models = [*chatglm3_6b_32k_model, *yi_6b_chat_model, ] ), runner=dict( type=SlurmSequentialRunner, partition='llm_dev2', quotatype='auto', max_num_workers=32, task=dict( type=SubjectiveEvalTask, judge_cfg=judge_model )), ) summarizer = dict( type=CompassArenaSummarizer )