from opencompass.models import LmdeployPytorchModel settings = [ ('qwen1.5-0.5b-pytorch', 'Qwen/Qwen1.5-0.5B', 1), ('qwen1.5-1.8b-pytorch', 'Qwen/Qwen1.5-1.8B', 1), ('qwen1.5-4b-pytorch', 'Qwen/Qwen1.5-4B', 1), ('qwen1.5-7b-pytorch', 'Qwen/Qwen1.5-7B', 1), ('qwen1.5-14b-pytorch', 'Qwen/Qwen1.5-14B', 1), ('qwen1.5-32b-pytorch', 'Qwen/Qwen1.5-32B', 2), ('qwen1.5-72b-pytorch', 'Qwen/Qwen1.5-72B', 4), ('qwen1.5-110b-pytorch', 'Qwen/Qwen1.5-110B', 4), ('qwen1.5-moe-a2.7b-pytorch', 'Qwen/Qwen1.5-MoE-A2.7B', 1), ] models = [] for abbr, path, num_gpus in settings: models.append( dict( type=LmdeployPytorchModel, abbr=abbr, path=path, engine_config=dict(session_len=2048, max_batch_size=16, tp=num_gpus), gen_config=dict(top_k=1, temperature=1, top_p=0.9, max_new_tokens=1024), max_out_len=1024, max_seq_len=2048, batch_size=16, concurrency=16, run_cfg=dict(num_gpus=num_gpus), ) )