from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.datasets.subjective_cmp import SubjectiveCmpDataset subjective_reader_cfg = dict( input_columns=['question', 'index', 'reference_answer', 'evaluating_guidance', 'capability', 'prompt'], output_column='judge', train_split='test') subjective_all_sets = [ 'creation_v0.1', ] subjective_datasets = [] for _name in subjective_all_sets: subjective_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt='{question}' ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=2048), ) subjective_eval_cfg = dict( evaluator=dict( type=LMEvaluator, cmp_order='both', prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict( role='SYSTEM', fallback_role='HUMAN', prompt='{prompt}' ), ], round=[dict(role='HUMAN', prompt='回答 1: <回答 1 开始> {prediction} <回答 1 结束>\n回答 2: <回答 2 开始> {prediction2} <回答 2 结束>\n')]))), pred_role='BOT', ) subjective_datasets.append( dict( abbr=f'{_name}', type=SubjectiveCmpDataset, path='./data/subjective/', name=_name, reader_cfg=subjective_reader_cfg, infer_cfg=subjective_infer_cfg, eval_cfg=subjective_eval_cfg ))