from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.datasets import MultiroundDataset subjective_reader_cfg = dict( input_columns=['dialogue', 'capability', 'gpt4_prefix', 'gpt4_suffix'], output_column='judge', ) subjective_all_sets = [ 'FunctionalMT', ] data_path ='data/subjective/' subjective_datasets = [] for _name in subjective_all_sets: subjective_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template="""{dialogue}""", ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='every'), ) subjective_eval_cfg = dict( evaluator=dict( type=LMEvaluator, pack_all_predictions=True, prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role='HUMAN', prompt = '{gpt4_prefix}{prediction}{gpt4_suffix}' ), ]), ), ), pred_role='BOT', ) subjective_datasets.append( dict( abbr=f'{_name}', type=MultiroundDataset, path=data_path, name=_name, reader_cfg=subjective_reader_cfg, infer_cfg=subjective_infer_cfg, eval_cfg=subjective_eval_cfg ))