from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator from opencompass.datasets import GPQADataset, GPQAEvaluator from opencompass.utils import first_option_postprocess gpqa_reader_cfg = dict( input_columns=['question', 'A', 'B', 'C', 'D'], output_column='answer') hint = f'For the multiple choice question below, please provide the correct answer option directly.' question_and_options = 'Question: {question}\n(A){A}\n(B){B}\n(C){C}\n(D){D}\n' gpqa_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template={ opt: f'{question_and_options}\nAnswer: {opt}' for opt in ['A', 'B', 'C', 'D']}, ), prompt_template=dict( type=PromptTemplate, template={ opt: f'{hint}\n{question_and_options}\nAnswer: {opt}' for opt in ['A', 'B', 'C', 'D'] }, ice_token='' ), retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]), inferencer=dict(type=PPLInferencer)) gpqa_eval_cfg = dict(evaluator=dict(type=AccwithDetailsEvaluator)) gpqa_datasets = [] gpqa_subsets = { # 'extended': 'gpqa_extended.csv', # 'main': 'gpqa_main.csv', 'diamond': 'gpqa_diamond.csv' } for split in list(gpqa_subsets.keys()): gpqa_datasets.append( dict( abbr='GPQA_' + split, type=GPQADataset, path='./data/gpqa/', name=gpqa_subsets[split], reader_cfg=gpqa_reader_cfg, infer_cfg=gpqa_infer_cfg, eval_cfg=gpqa_eval_cfg) )