from opencompass.datasets import WildBenchDataset from opencompass.openicl.icl_evaluator import LMEvaluator from opencompass.openicl.icl_inferencer import ChatInferencer from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever hu_life_qa_reader_cfg = dict( input_columns=["dialogue", "prompt"], output_column="judge", ) data_path ="/mnt/hwfile/opendatalab/yanghaote/share/HuLifeQA_20250131.jsonl" hu_life_qa_datasets = [] hu_life_qa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template="""{dialogue}""" ), retriever=dict(type=ZeroRetriever), inferencer=dict( type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode="last", ), ) hu_life_qa_eval_cfg = dict( evaluator=dict( type=LMEvaluator, prompt_template=dict( type=PromptTemplate, template="""{prompt}""" ), ), pred_role="BOT", ) hu_life_qa_datasets.append( dict( abbr="hu_life_qa", type=WildBenchDataset, path=data_path, reader_cfg=hu_life_qa_reader_cfg, infer_cfg=hu_life_qa_infer_cfg, eval_cfg=hu_life_qa_eval_cfg, ) ) task_group_new = { "life_culture_custom": "life_culture_custom", "childbearing and education": "life_culture_custom", "culture and community": "life_culture_custom", 'culture and customs': "life_culture_custom", "food and drink": "life_culture_custom", "health": "life_culture_custom", "holidays": "life_culture_custom", "home": "life_culture_custom", "person": "life_culture_custom", "transport": "life_culture_custom", "science": "life_culture_custom", "travel": "life_culture_custom", "business_finance": "business_finance", "business and finance": "business_finance", "education_profession": "education_profession", "public education and courses": "education_profession", "politics_policy_law": "politics_policy_law", "politics": "politics_policy_law", }