import sys from concurrent.futures import ThreadPoolExecutor from typing import Dict, List, Optional, Union import requests from opencompass.registry import MODELS from opencompass.utils.prompt import PromptList from .base_api import BaseAPIModel PromptType = Union[PromptList, str] @MODELS.register_module(name=['MiniMax']) class MiniMax(BaseAPIModel): """Model wrapper around MiniMax. Documentation: https://api.minimax.chat/document/guides/chat-pro Args: path (str): The name of MiniMax model. e.g. `abab5.5-chat` model_type (str): The type of the model e.g. `chat` group_id (str): The id of group(like the org ID of group) key (str): Authorization key. query_per_second (int): The maximum queries allowed per second between two consecutive calls of the API. Defaults to 1. max_seq_len (int): Unused here. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. retry (int): Number of retires if the API call fails. Defaults to 2. """ def __init__( self, path: str, key: str, group_id: str, model_type: str = 'chat', url: str = 'https://api.minimax.chat/v1/text/chatcompletion_pro?GroupId=', query_per_second: int = 2, max_seq_len: int = 2048, meta_template: Optional[Dict] = None, retry: int = 2, ): super().__init__(path=path, max_seq_len=max_seq_len, query_per_second=query_per_second, meta_template=meta_template, retry=retry) self.headers = { 'Authorization': f'Bearer {key}', 'Content-Type': 'application/json', } self.type = model_type self.url = url + group_id self.model = path def generate( self, inputs: List[str or PromptList], max_out_len: int = 512, ) -> List[str]: """Generate results given a list of inputs. Args: inputs (List[str or PromptList]): A list of strings or PromptDicts. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: List[str]: A list of generated strings. """ with ThreadPoolExecutor() as executor: results = list( executor.map(self._generate, inputs, [max_out_len] * len(inputs))) self.flush() return results def flush(self): """Flush stdout and stderr when concurrent resources exists. When use multiproessing with standard io rediected to files, need to flush internal information for examination or log loss when system breaks. """ if hasattr(self, 'tokens'): sys.stdout.flush() sys.stderr.flush() def acquire(self): """Acquire concurrent resources if exists. This behavior will fall back to wait with query_per_second if there are no concurrent resources. """ if hasattr(self, 'tokens'): self.tokens.acquire() else: self.wait() def release(self): """Release concurrent resources if acquired. This behavior will fall back to do nothing if there are no concurrent resources. """ if hasattr(self, 'tokens'): self.tokens.release() def _generate( self, input: str or PromptList, max_out_len: int = 512, ) -> str: """Generate results given an input. Args: inputs (str or PromptList): A string or PromptDict. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: str: The generated string. """ assert isinstance(input, (str, PromptList)) if isinstance(input, str): messages = [{ 'sender_type': 'USER', 'sender_name': 'OpenCompass', 'text': input }] else: messages = [] for item in input: msg = {'text': item['prompt']} if item['role'] == 'HUMAN': msg['sender_type'] = 'USER' msg['sender_name'] = 'OpenCompass' elif item['role'] == 'BOT': msg['sender_type'] = 'BOT' msg['sender_name'] = 'MM智能助理' messages.append(msg) data = { 'bot_setting': [{ 'bot_name': 'MM智能助理', 'content': 'MM智能助理是一款由MiniMax自研的,没有调用其他产品的接口的大型语言模型。' + 'MiniMax是一家中国科技公司,一直致力于进行大模型相关的研究。' }], 'reply_constraints': { 'sender_type': 'BOT', 'sender_name': 'MM智能助理' }, 'model': self.model, 'messages': messages } max_num_retries = 0 while max_num_retries < self.retry: self.acquire() raw_response = requests.request('POST', url=self.url, headers=self.headers, json=data) response = raw_response.json() self.release() if response is None: print('Connection error, reconnect.') # if connect error, frequent requests will casuse # continuous unstable network, therefore wait here # to slow down the request self.wait() continue if raw_response.status_code == 200: # msg = json.load(response.text) # response msg = response['reply'] return msg # sensitive content, prompt overlength, network error # or illegal prompt if (response.status_code == 1000 or response.status_code == 1001 or response.status_code == 1002 or response.status_code == 1004 or response.status_code == 1008 or response.status_code == 1013 or response.status_code == 1027 or response.status_code == 1039 or response.status_code == 2013): print(response.text) return '' print(response) max_num_retries += 1 raise RuntimeError(response.text)