from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, normalize_final_answer math_reader_cfg = dict(input_columns=['problem'], output_column='solution') math_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='{problem}\nPlease provide only the final answer, without including any intermediate reasoning steps, and put your final answer within \\boxed{}.'), ] ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=1024), ) # postprocess v2 math_eval_cfg = dict( evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2), ) math_datasets = [ dict( type=MATHDataset, abbr='math', path='opencompass/math', reader_cfg=math_reader_cfg, infer_cfg=math_infer_cfg, eval_cfg=math_eval_cfg, ) ]