from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import LastLettersDataset, last_letters_pred_postprocess last_letters_reader_cfg = dict( input_columns=['question'], output_column='answer', train_split='test', test_split='test' ) last_letters_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='Question: Take the last letters of the words in "Elon Musk" and concatenate them.\nPlease answer directly without additional reasoning steps.\nAnswer:'), dict(role='BOT', prompt='The answer is nk.\n'), dict(role='HUMAN', prompt='Question: Take the last letters of the words in "Larry Page" and concatenate them.\nPlease answer directly without additional reasoning steps.\nAnswer:'), dict(role='BOT', prompt='The answer is ye.\n'), dict(role='HUMAN', prompt='Question: Take the last letters of the words in "Sergey Brin" and concatenate them.\nPlease answer directly without additional reasoning steps.\nAnswer:'), dict(role='BOT', prompt='The answer is yn.\n'), dict(role='HUMAN', prompt='Question: Take the last letters of the words in "Bill Gates" and concatenate them.\nPlease answer directly without additional reasoning steps.\nAnswer:'), dict(role='BOT', prompt='The answer is ls.\n'), dict(role='HUMAN', prompt='Question: {question}\nPlease answer directly without additional reasoning steps.\nAnswer:'), ] ) ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512), ) last_letters_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=last_letters_pred_postprocess), ) last_letters_datasets = [ dict( abbr='last_letters', type=LastLettersDataset, path='last_letters', reader_cfg=last_letters_reader_cfg, infer_cfg=last_letters_infer_cfg, eval_cfg=last_letters_eval_cfg ) ]