import sys from concurrent.futures import ThreadPoolExecutor from typing import Dict, List, Optional, Union from opencompass.registry import MODELS from opencompass.utils.prompt import PromptList from .base_api import BaseAPIModel PromptType = Union[PromptList, str] @MODELS.register_module() class ZhiPuAI(BaseAPIModel): """Model wrapper around ZhiPuAI. Args: path (str): The name of OpenAI's model. key (str): Authorization key. query_per_second (int): The maximum queries allowed per second between two consecutive calls of the API. Defaults to 1. max_seq_len (int): Unused here. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. retry (int): Number of retires if the API call fails. Defaults to 2. """ def __init__( self, path: str, key: str, query_per_second: int = 2, max_seq_len: int = 2048, meta_template: Optional[Dict] = None, retry: int = 2, ): super().__init__(path=path, max_seq_len=max_seq_len, query_per_second=query_per_second, meta_template=meta_template, retry=retry) import zhipuai self.zhipuai = zhipuai self.zhipuai.api_key = key self.model = path def generate( self, inputs: List[str or PromptList], max_out_len: int = 512, ) -> List[str]: """Generate results given a list of inputs. Args: inputs (List[str or PromptList]): A list of strings or PromptDicts. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: List[str]: A list of generated strings. """ with ThreadPoolExecutor() as executor: results = list( executor.map(self._generate, inputs, [max_out_len] * len(inputs))) self.flush() return results def flush(self): """Flush stdout and stderr when concurrent resources exists. When use multiproessing with standard io rediected to files, need to flush internal information for examination or log loss when system breaks. """ if hasattr(self, 'tokens'): sys.stdout.flush() sys.stderr.flush() def acquire(self): """Acquire concurrent resources if exists. This behavior will fall back to wait with query_per_second if there are no concurrent resources. """ if hasattr(self, 'tokens'): self.tokens.acquire() else: self.wait() def release(self): """Release concurrent resources if acquired. This behavior will fall back to do nothing if there are no concurrent resources. """ if hasattr(self, 'tokens'): self.tokens.release() def _generate( self, input: str or PromptList, max_out_len: int = 512, ) -> str: """Generate results given an input. Args: inputs (str or PromptList): A string or PromptDict. The PromptDict should be organized in OpenCompass' API format. max_out_len (int): The maximum length of the output. Returns: str: The generated string. """ assert isinstance(input, (str, PromptList)) if isinstance(input, str): messages = [{'role': 'user', 'content': input}] else: messages = [] for item in input: msg = {'content': item['prompt']} if item['role'] == 'HUMAN': msg['role'] = 'user' elif item['role'] == 'BOT': msg['role'] = 'assistant' messages.append(msg) data = {'model': self.model, 'prompt': messages} max_num_retries = 0 while max_num_retries < self.retry: self.acquire() response = self.zhipuai.model_api.invoke(**data) self.release() if response is None: print('Connection error, reconnect.') # if connect error, frequent requests will casuse # continuous unstable network, therefore wait here # to slow down the request self.wait() continue if response['code'] == 200 and response['success']: msg = response['data']['choices'][0]['content'] return msg # sensitive content, prompt overlength, network error # or illegal prompt if (response['code'] == 1301 or response['code'] == 1261 or response['code'] == 1234 or response['code'] == 1214): print(response['msg']) return '' print(response) max_num_retries += 1 raise RuntimeError(response['msg'])