from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import winograndeDataset_V2 from opencompass.utils.text_postprocessors import first_option_postprocess winogrande_reader_cfg = dict( input_columns=["opt1", "opt2"], output_column="answer", ) winogrande_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_role="BOT", pred_postprocessor=dict(type=first_option_postprocess, options='AB'), ) _winogrande_prompt = dict( prompt_1="Which of the following is a good sentence:\nA. {opt1}\nB. {opt2}\nAnswer:", prompt_2="Which is a good sentence out of the following:\nA. {opt1}\nB. {opt2}\nAnswer:", prompt_3="Can you identify a good sentence from the following:\nA. {opt1}\nB. {opt2}\nAnswer:", ) winogrande_datasets = [] for _choice in _winogrande_prompt: winogrande_datasets.append( dict( abbr='winogrande_'+_choice, type=winograndeDataset_V2, path="./data/winogrande", reader_cfg=winogrande_reader_cfg, infer_cfg=dict( prompt_template=dict( type=PromptTemplate, template=dict(round=[ dict( role="HUMAN", prompt=_winogrande_prompt[_choice] ), ]), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer), ), eval_cfg=winogrande_eval_cfg), ) del _choice