from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset summedits_reader_cfg = dict( input_columns=['doc', 'summary'], output_column='label', test_split='train') summedits_prompt1 = "Given the document below, you have to determine if 'Yes' or 'No', the summary is factually consistent with the document." summedits_prompt2 = "Document:\n{doc}\nSummary:\n{summary}\nIs the summary factually consistent with the document? " summedits_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ 0: dict( begin=[ dict( role='SYSTEM', fallback_role='HUMAN', prompt=summedits_prompt1) ], round=[ dict(role="HUMAN", prompt=summedits_prompt2), dict(role="BOT", prompt="No") ]), 1: dict( begin=[ dict( role='SYSTEM', fallback_role='HUMAN', prompt=summedits_prompt1) ], round=[ dict(role="HUMAN", prompt=summedits_prompt2), dict(role="BOT", prompt="Yes") ]), }), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer)) summedits_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) summedits_datasets = [ dict( type=HFDataset, abbr='summedits', path='json', split='train', data_files='./data/summedits/summedits.jsonl', reader_cfg=summedits_reader_cfg, infer_cfg=summedits_infer_cfg, eval_cfg=summedits_eval_cfg) ]