from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import LongBenchRougeEvaluator, LongBenchsamsumDataset, samsum_postprocess LongBench_samsum_reader_cfg = dict( input_columns=['context', 'input'], output_column='answers', train_split='test', test_split='test' ) LongBench_samsum_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='Summarize the dialogue into a few short sentences. The following are some examples.\n\n{context}\n\n{input}'), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=128) ) LongBench_samsum_eval_cfg = dict( evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT', pred_postprocessor=dict(type=samsum_postprocess), ) LongBench_samsum_datasets = [ dict( type=LongBenchsamsumDataset, abbr='LongBench_samsum', path='THUDM/LongBench', name='samsum', reader_cfg=LongBench_samsum_reader_cfg, infer_cfg=LongBench_samsum_infer_cfg, eval_cfg=LongBench_samsum_eval_cfg) ]