from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HungarianExamMathDataset hungarianmath_reader_cfg = dict(input_columns=['question'], output_column=None) template = """Problem: Find the domain of the expression $\frac{\sqrt{x-2}}{\sqrt{5-x}}$. Solution: To determine the domain, we must ensure that: 1. The expressions inside each square root are non-negative. 2. The denominator is not equal to zero. For the numerator, $x-2 \ge 0$ gives $x \ge 2$. For the denominator, $5-x \ge 0$ gives $x \le 5$. And since the denominator cannot be zero, $5-x > 0$ which further narrows it to $x < 5$. Combining these results, the domain of the expression is $[2,5)$. Final Answer: The final answer is $[2,5)$. Problem: If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12$, then find $\det (\mathbf{A} \mathbf{B})$. Solution: Using the property of determinants, we can say that: $\det (\mathbf{A} \mathbf{B}) = (\det \mathbf{A})(\det \mathbf{B})$. Plugging in the given values: $\det (\mathbf{A} \mathbf{B}) = 2 \times 12 = 24$. Final Answer: The final answer is $24$. Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight? Solution: First, calculate the total weight Terrell lifts with the 20-pound weights: $2 \times 12 \times 20 = 480$ pounds. If he uses 15-pound weights and lifts them $n$ times: $2 \times 15 \times n = 30n$ pounds. To find $n$, set these two equal: \begin{align*} 30n &= 480 \\ n &= \frac{480}{30} \\ n &= 16 \end{align*} Final Answer: The final answer is $16$. Problem: If the system of equations \begin{align*} 6x-4y &= a, \\ 6y-9x &= b. \end{align*} has a solution $(x, y)$ where $x$ and $y$ are both nonzero, find $\frac{a}{b}$, assuming $b$ is nonzero. Solution: Multiply the first equation by $-\frac{3}{2}$ to obtain: $6y-9x = -\frac{3}{2}a$. Since we also know that $6y-9x = b$, equating them gives: $-\frac{3}{2}a = b$ which implies $\frac{a}{b} = -\frac{2}{3}$. Final Answer: The final answer is $-\frac{2}{3}$.""" hungarianmath_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt=template+"\n\nProblem:\n{question}\n\nSolution:\n"), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=1024)) # Attention: this math dataset needs human to evaluate the generated answer, so the AccEvaluator is just a placeholder. hungarianmath_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) hungarianmath_datasets = [ dict( abbr='HungarianExamMath', type=HungarianExamMathDataset, path='./data/HungarianExamMath/test.csv', reader_cfg=hungarianmath_reader_cfg, infer_cfg=hungarianmath_infer_cfg, eval_cfg=hungarianmath_eval_cfg) ]