from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import hellaswagDataset_V2 hellaswag_reader_cfg = dict( input_columns=['query', 'A', 'B', 'C', 'D'], output_column='label') hellaswag_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template={ ans: dict(round=[ dict(role="HUMAN", prompt="{ctx}\nQuestion: Which ending makes the most sense?\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer: "), dict(role="BOT", prompt=f"{ans}"), ]) for ans in ['A', 'B', 'C', 'D'] }), retriever=dict(type=ZeroRetriever), inferencer=dict(type=PPLInferencer)) hellaswag_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) hellaswag_datasets = [ dict( abbr='hellaswag', type=hellaswagDataset_V2, path='./data/hellaswag/hellaswag.jsonl', reader_cfg=hellaswag_reader_cfg, infer_cfg=hellaswag_infer_cfg, eval_cfg=hellaswag_eval_cfg) ]