from mmengine.config import read_base with read_base(): from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI from opencompass.models.openai_api import OpenAIAllesAPIN from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner from opencompass.runners import SlurmSequentialRunner from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask from opencompass.summarizers import MTBenchSummarizer api_meta_template = dict( round=[ dict(role='SYSTEM', api_role='SYSTEM'), dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ] ) _meta_template = dict( round=[ dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'), dict(role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True), ], ) # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models models = [ dict( type=HuggingFaceCausalLM, abbr='qwen-7b-chat-hf', path="Qwen/Qwen-7B-Chat", tokenizer_path='Qwen/Qwen-7B-Chat', model_kwargs=dict( device_map='auto', trust_remote_code=True ), tokenizer_kwargs=dict( padding_side='left', truncation_side='left', trust_remote_code=True, use_fast=False, ), pad_token_id=151643, max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=_meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='<|im_end|>', ) ] datasets = [*subjective_datasets] # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration judge_models = [dict( abbr='GPT4-Turbo', type=OpenAI, path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613 key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=16, max_out_len=2048, max_seq_len=2048, batch_size=8, temperature=0, )] ## single evaluation eval = dict( partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models), runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)), ) summarizer = dict(type=MTBenchSummarizer, judge_type='single') work_dir = 'outputs/mtbench/'