from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import ChatInferencer from opencompass.openicl.icl_evaluator import TEvalEvaluator from opencompass.datasets import teval_postprocess, TEvalDataset teval_subject_mapping = { "instruct": ["instruct_v1"], "plan": ["plan_json_v1", "plan_str_v1"], "review": ["review_str_v1"], "reason_retrieve_understand": ["reason_retrieve_understand_json_v1"], "reason": ["reason_str_v1"], "retrieve": ["retrieve_str_v1"], "understand": ["understand_str_v1"], } teval_reader_cfg = dict(input_columns=["prompt"], output_column="ground_truth") teval_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role="HUMAN", prompt="{prompt}"), ], ), ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=ChatInferencer), ) teval_all_sets = list(teval_subject_mapping.keys()) teval_datasets = [] for _name in teval_all_sets: teval_eval_cfg = dict( evaluator=dict(type=TEvalEvaluator, subset=_name), pred_postprocessor=dict(type=teval_postprocess), num_gpus=1, ) for subset in teval_subject_mapping[_name]: teval_datasets.append( dict( abbr="teval-" + subset, type=TEvalDataset, path="./data/teval/EN", name=subset, reader_cfg=teval_reader_cfg, infer_cfg=teval_infer_cfg, eval_cfg=teval_eval_cfg, ) )