from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import hellaswagDatasetwithICE from opencompass.utils.text_postprocessors import first_option_postprocess hellaswag_reader_cfg = dict( input_columns=["ctx", "A", "B", "C", "D"], output_column="label", train_split="train", test_split="val", ) hellaswag_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template=dict( round=[ dict(role="HUMAN", prompt=f"{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?"), dict(role="BOT", prompt="{label}\n"), ] ), ), prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role="HUMAN", prompt="Continue the following text without adding any additional information or formatting:\n"), "", ], round=[ dict(role="HUMAN", prompt=f"{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?"), dict(role="BOT", prompt="{label}\n"), ], ), ice_token="", ), retriever=dict(type=FixKRetriever, fix_id_list=list(range(10))), inferencer=dict(type=GenInferencer), ) hellaswag_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_role="BOT", pred_postprocessor=dict(type=first_option_postprocess, options="ABCD"), ) hellaswag_datasets = [ dict( abbr="hellaswag", type=hellaswagDatasetwithICE, path="./data/hellaswag/", reader_cfg=hellaswag_reader_cfg, infer_cfg=hellaswag_infer_cfg, eval_cfg=hellaswag_eval_cfg, ) ]