from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import FixKRetriever from opencompass.openicl.icl_inferencer import PPLInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import HFDataset _hint = "The following are text classification questions. \n" \ "Please determine whether the following sentence is linguistically acceptable: " \ "0 means unacceptable, 1 means acceptable.\n" CoLA_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template="Sentence: {sentence}\nResult: {label}", ), prompt_template=dict( type=PromptTemplate, template={ answer: f"{_hint}Sentence: {{sentence}}\nResult: {answer}" for answer in [0, 1] }, ice_token='', ), retriever=dict(type=FixKRetriever, fix_id_list=[17, 18, 19, 20, 21]), inferencer=dict(type=PPLInferencer)) CoLA_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) CoLA_datasets = [] for _split in ["validation"]: CoLA_reader_cfg = dict( input_columns=['sentence'], output_column='label', test_split=_split ) CoLA_datasets.append( dict( abbr=f'CoLA-{_split}', type=HFDataset, path='glue', name='cola', reader_cfg=CoLA_reader_cfg, infer_cfg=CoLA_infer_cfg, eval_cfg=CoLA_eval_cfg ) )