import csv import os import pytest import yaml output_path = 'regression_result_daily' chat_model_list = [ 'baichuan2-7b-chat-hf', 'deepseek-7b-chat-hf', 'deepseek-moe-16b-chat-hf', 'gemma-2b-it-hf', 'gemma-7b-it-hf', 'internlm2-chat-1.8b-turbomind', 'internlm2-chat-1.8b-sft-turbomind', 'internlm2-chat-7b-turbomind', 'internlm2-chat-7b-sft-turbomind', 'llama-3-8b-instruct-hf', 'llama-3-8b-instruct-turbomind', 'mistral-7b-instruct-v0.2-hf', 'minicpm-2b-dpo-fp32-hf', 'minicpm-2b-sft-bf16-hf', 'minicpm-2b-sft-fp32-hf', 'phi-3-mini-4k-instruct-hf', 'qwen1.5-0.5b-chat-hf', 'qwen2-1.5b-instruct-turbomind', 'qwen2-7b-instruct-turbomind', 'yi-1.5-6b-chat-hf', 'yi-1.5-9b-chat-hf' ] base_model_list = [ 'deepseek-moe-16b-base-hf', 'deepseek-7b-base-turbomind', 'gemma-2b-hf', 'gemma-7b-hf', 'internlm2-1.8b-turbomind', 'internlm2-7b-turbomind', 'internlm2-base-7b-turbomind', 'llama-3-8b-turbomind', 'mistral-7b-v0.2-hf', 'qwen1.5-moe-a2.7b-hf', 'qwen2-0.5b-hf', 'qwen2-1.5b-turbomind', 'qwen2-7b-turbomind', 'yi-1.5-6b-hf', 'yi-1.5-9b-hf' ] dataset_list = ['gsm8k', 'race-middle', 'race-high'] @pytest.fixture() def baseline_scores(request): config_path = os.path.join(request.config.rootdir, '.github/scripts/oc_score_baseline.yaml') with open(config_path) as f: config = yaml.load(f.read(), Loader=yaml.SafeLoader) return config @pytest.fixture() def result_scores(): file = find_csv_files(output_path) if file is None: return None return read_csv_file(file) @pytest.mark.usefixtures('result_scores') @pytest.mark.usefixtures('baseline_scores') @pytest.mark.chat class TestChat: """Test cases for chat model.""" @pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in chat_model_list for p2 in dataset_list]) def test_model_dataset_score(self, baseline_scores, result_scores, model, dataset): base_score = baseline_scores.get(model).get(dataset) result_score = result_scores.get(model).get(dataset) assert_score(result_score, base_score) @pytest.mark.usefixtures('result_scores') @pytest.mark.usefixtures('baseline_scores') @pytest.mark.base class TestBase: """Test cases for base model.""" @pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in base_model_list for p2 in dataset_list]) def test_model_dataset_score(self, baseline_scores, result_scores, model, dataset): base_score = baseline_scores.get(model).get(dataset) result_score = result_scores.get(model).get(dataset) assert_score(result_score, base_score) def assert_score(score, baseline): if score is None or score == '-': assert False, 'value is none' if float(score) <= (baseline + 5) and float(score) >= (baseline - 5): print(score + ' between ' + str(baseline - 5) + ' and ' + str(baseline + 5)) assert True else: assert False, score + ' not between ' + str( baseline - 5) + ' and ' + str(baseline + 5) def find_csv_files(directory): csv_files = [] for root, dirs, files in os.walk(directory): for file in files: if file.endswith('.csv'): csv_files.append(os.path.join(root, file)) csv_files_with_time = {f: os.path.getctime(f) for f in csv_files} sorted_csv_files = sorted(csv_files_with_time.items(), key=lambda x: x[1]) latest_csv_file = sorted_csv_files[-1][0] return latest_csv_file def read_csv_file(file_path): with open(file_path, 'r') as csvfile: reader = csv.DictReader(csvfile) filtered_data = [] for row in reader: filtered_row = { k: v for k, v in row.items() if k not in ['version', 'metric', 'mode'] } filtered_data.append(filtered_row) result = {} for data in filtered_data: dataset = data.get('dataset') for key in data.keys(): if key == 'dataset': continue else: if key in result.keys(): result.get(key)[dataset] = data.get(key) else: result[key] = {dataset: data.get(key)} return result