from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever, FixKRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import NaturalQuestionDataset, NQEvaluator nq_datasets = [] for k in [0, 1, 5]: nq_reader_cfg = dict( input_columns=['question'], output_column='answer', train_split='dev') if k == 0: nq_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='Answer these questions, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'), dict(role='BOT', prompt='A:'), ] ) ), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=50) ) else: nq_infer_cfg = dict( ice_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'), dict(role='BOT', prompt='A: The answer is {answer}.\n'), ] ), ), prompt_template=dict( type=PromptTemplate, template=dict( begin="", round=[ dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'), dict(role='BOT', prompt='A:'), ] ), ice_token="", ), retriever=dict(type=FixKRetriever), inferencer=dict(type=GenInferencer, max_out_len=50, fix_id_list=list(range(k))), ) nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_datasets.append( dict( type=NaturalQuestionDataset, abbr='nq' if k == 0 else f'nq_{k}shot', path='./data/nq/', reader_cfg=nq_reader_cfg, infer_cfg=nq_infer_cfg, eval_cfg=nq_eval_cfg) )