# flake8: noqa: E501 import csv import json import os import os.path as osp import re from collections import defaultdict from datetime import datetime import mmengine import numpy as np import pandas as pd from mmengine import ConfigDict from prettytable import from_csv from opencompass.utils import (build_dataset_from_cfg, dataset_abbr_from_cfg, model_abbr_from_cfg) from .utils import get_outdir def post_process_charm_mem(judgement: str): """Input a string like below: xxx[correct]xxx, and extract the judge """ pattern = r'(?i)\[(incorrect|correct|正确|错误|Yes|No)\]' matched_result = re.findall(pattern, judgement) if matched_result: content = matched_result[0].lower() if content in ['correct', '正确', 'yes']: return {'correct': True} elif content in ['incorrect', '错误', 'no']: return {'correct': False} else: return None def get_judgeanswer_and_reference_charm_mem(dataset, subdir_path, post_process): """Extract judgements (scores), references and original judging prompts. Args: dataset (ConfigDict): Dataset config. subdir_path (str): Model path in results dir. post_process (function): The pre-defined extract function. """ dataset_abbr = dataset_abbr_from_cfg(dataset) filename = osp.join(subdir_path, dataset_abbr + '.json') partial_filename = osp.join(subdir_path, dataset_abbr + '_0.json') if osp.exists(osp.realpath(filename)): result = mmengine.load(filename) elif osp.exists(osp.realpath(partial_filename)): filename = partial_filename result = {} i = 1 partial_dict_flag = 0 while osp.exists(osp.realpath(filename)): res = mmengine.load(filename) for k, v in res.items(): result[partial_dict_flag] = v partial_dict_flag += 1 filename = osp.join(subdir_path, dataset_abbr + '_' + str(i) + '.json') i += 1 else: result = {} if len(result) == 0: print('*' * 100) print('There are no results for ' + filename + ' or ' + partial_filename) print('*' * 100) assert len(result) > 0 judging_prompts = [] judged_answers = [] references = [] for k, v in result.items(): processed_judge = post_process(v['prediction']) if processed_judge is not None: judged_answers.append(processed_judge) references.append(v['gold']) judging_origin_prompts = v['origin_prompt'] if len(judging_origin_prompts) > 0: judging_prompts.append(judging_origin_prompts[0].get( 'prompt', None)) if len(judged_answers) != len(result): print( f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!' ) if len(judged_answers) == 0: print('*' * 100) print( 'There are no extracted judgements, please change your judge model or check your prompt!!!' ) print('*' * 100) assert len(judged_answers) > 0 return judged_answers, references, judging_prompts def get_accuracy(judged_answers): n_total = 0 n_correct = 0 for ans in judged_answers: if ans.get('correct', False): n_correct += 1 n_total += 1 return round(n_correct / n_total * 100, 2) class CharmMemSummarizer: """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict, judge_type='single') -> None: self.judge_type = judge_type self.tasks = [] self.cfg = config if self.judge_type == 'single': self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] self.eval_model_abbrs = [ model_abbr_from_cfg(model) for model in self.eval_model_cfgs ] else: raise NotImplementedError self.judge_abbr = model_abbr_from_cfg( self.cfg['eval']['partitioner']['judge_models'][0]) self.judge_map = {'single': post_process_charm_mem} self.judge_function = self.judge_map[self.judge_type] def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ if self.judge_type == 'single': dataset_cfgs = self.cfg['datasets'] judge_model = self.judge_abbr output_dir, results_folder = get_outdir(self.cfg, time_str) accuracy_df = pd.DataFrame(columns=self.eval_model_abbrs) for dataset in dataset_cfgs: dataset_abbr = dataset_abbr_from_cfg(dataset) dataset_instance = build_dataset_from_cfg(dataset) out_dir = osp.join( output_dir, 'judged-by--' + judge_model + '-' + dataset_abbr) os.makedirs(out_dir, exist_ok=True) cur_acc_dict = {'dataset': dataset_abbr} for eval_model_abbr in self.eval_model_abbrs: subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr subdir_path = os.path.join(results_folder, subdir) if os.path.isdir(subdir_path): model = eval_model_abbr (judged_answers, references, judging_prompts ) = get_judgeanswer_and_reference_charm_mem( dataset, subdir_path, self.judge_function, ) accuracy = get_accuracy(judged_answers) cur_acc_dict[eval_model_abbr] = accuracy detail_dict = {} for i in range(len(judged_answers)): cur_dict = {} cur_dict['judging_prompt'] = judging_prompts[i] for input_col in dataset_instance.reader.input_columns: cur_dict[input_col] = dataset_instance.reader[ 'test'][input_col][i] cur_dict['reference'] = references[i] cur_dict.update(judged_answers[i]) detail_dict[str(i)] = cur_dict out_dict = {'score': accuracy, 'details': detail_dict} fout = osp.join(out_dir, model + '.json') with open(fout, 'w', encoding='utf-8') as f: json.dump(out_dict, f, indent=4, ensure_ascii=False) else: print(subdir_path + ' is not exist! please check!') accuracy_df = accuracy_df.append(cur_acc_dict, ignore_index=True) accuracy_df.set_index('dataset', inplace=True) accuracy_file = osp.join(output_dir, 'judged-by--' + judge_model + '.csv') accuracy_df.to_csv(accuracy_file, index=True) with open(accuracy_file, 'r') as f: x = from_csv(f) print(x)