# flake8: noqa: E501 import csv import os import os.path as osp import re from collections import defaultdict from datetime import datetime import numpy as np from mmengine import ConfigDict try: from prettytable import from_csv except ImportError: from_csv = None from opencompass.utils import model_abbr_from_cfg from .compass_arena import CompassArenaSummarizer from .utils import get_judgeanswer_and_reference, get_outdir # from .utils.writer import Writer def post_process_mtbench_pair(judgement: str): """Input a string like below: xxx[[A]]xxx, and extract the judge """ pattern = r'\[([A-C]+)\]' matched_result = re.findall(pattern, judgement) if matched_result: return matched_result[0] else: return None def post_process_mtbench101(judgement: str): """Input a string like below: xxx[[5]]xxx, and extract the score """ match = re.search(r'\[([0-9]+)\]', judgement) if match: score = int(match.group(1)) else: return None return {'score': score, 'judgement': judgement} def get_final_results(judged_answers, references, output_dir, fout_flag, model): task_multi_id_scores = defaultdict(list) task_scores = defaultdict(list) for ans, ref in zip(judged_answers, references): task = ref['task'] multi_id = ref['multi_id'] score = ans['score'] task_multi_id_scores[(task, multi_id)].append(score) for (task, multi_id), scores in task_multi_id_scores.items(): min_score = min(scores) task_scores[task].append(min_score) final_task_scores = { task: sum(scores) / len(scores) if scores else 0 for task, scores in task_scores.items() } fout = osp.join(output_dir, 'task_score.csv') columns = list(final_task_scores.keys()) print('================task_score=====================') print(final_task_scores) with open(fout, 'a+', newline='') as csvfile: writer = csv.writer(csvfile) if fout_flag == 0: writer.writerow(['model'] + columns) writer.writerow([model] + [final_task_scores[column] for column in columns]) return 0 class MTBench101Summarizer(CompassArenaSummarizer): """Do the subjectivity analyze based on evaluation results. Args: config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime. """ def __init__(self, config: ConfigDict, judge_type='single') -> None: self.tasks = [] self.cfg = config self.eval_model_cfgs = self.cfg['eval']['partitioner']['models'] self.eval_model_abbrs = [ model_abbr_from_cfg(model) for model in self.eval_model_cfgs ] self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0]) self.judge_function = post_process_mtbench101 def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): """Summarize the subjectivity analysis based on evaluation results. Args: time_str (str): Timestamp for file naming. Returns: pd.DataFrame: The summary results. """ dataset_cfgs = self.cfg['datasets'] output_dir, results_folder = get_outdir(self.cfg, time_str) fout_flag = 0 for eval_model_abbr in self.eval_model_abbrs: subdir = eval_model_abbr + '_judged-by--' + self.judge_abbr subdir_path = os.path.join(results_folder, subdir) if os.path.isdir(subdir_path): model, judge_model = eval_model_abbr, self.judge_abbr for dataset in dataset_cfgs: print() judged_answers, references = get_judgeanswer_and_reference( dataset, subdir_path, self.judge_function) get_final_results(judged_answers, references, output_dir, fout_flag, model) fout_flag += 1 else: print(subdir_path + ' is not exist! please check!')