from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator, AccEvaluator from opencompass.datasets import LEvalGSM100Dataset from opencompass.utils.text_postprocessors import first_capital_postprocess, first_capital_postprocess_multi from opencompass.registry import TEXT_POSTPROCESSORS from opencompass.datasets import gsm100_dataset_postprocess, gsm100_postprocess LEval_gsm100_reader_cfg = dict( input_columns=['context', 'question'], output_column='answer', train_split='test', test_split='test' ) LEval_gsm100_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( round=[ dict(role='HUMAN', prompt='{question}\n'), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512) ) LEval_gsm100_eval_cfg = dict(evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=gsm100_postprocess), dataset_postprocessor=dict(type=gsm100_dataset_postprocess) ) LEval_gsm100_datasets = [ dict( type=LEvalGSM100Dataset, abbr='LEval_gsm100', path='L4NLP/LEval', name='gsm100', reader_cfg=LEval_gsm100_reader_cfg, infer_cfg=LEval_gsm100_infer_cfg, eval_cfg=LEval_gsm100_eval_cfg) ]