from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.datasets import SanitizedMBPPDataset, MBPPEvaluator sanitized_mbpp_reader_cfg = dict(input_columns=['text', 'test_list'], output_column='test_list_2') prompt = ''' You are an expert Python programmer, and here is your task: Write a function to find the similar elements from the given two tuple lists. Your code should pass these tests: assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5) assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4) assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14) [BEGIN] '\ def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)\ ' [DONE] You are an expert Python programmer, and here is your task: Write a python function to identify non-prime numbers. Your code should pass these tests: assert is_not_prime(2) == False assert is_not_prime(10) == True assert is_not_prime(35) == True [BEGIN] '\ import math def is_not_prime(n): result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result\ ' [DONE] You are an expert Python programmer, and here is your task: Write a function to find the largest integers from a given list of numbers using heap queue algorithm. Your code should pass these tests: assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65] assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75] assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] [BEGIN] '\ import heapq as hq def heap_queue_largest(nums,n): largest_nums = hq.nlargest(n, nums) return largest_nums\ ' [DONE] You are an expert Python programmer, and here is your task: {text} Your code should pass these tests: {test_list} '''.strip() sanitized_mbpp_infer_cfg = dict( prompt_template=dict(type=PromptTemplate, template=prompt), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=512), ) sanitized_mbpp_eval_cfg = dict(evaluator=dict(type=MBPPEvaluator), pred_role='BOT') sanitized_mbpp_datasets = [ dict( type=SanitizedMBPPDataset, abbr='sanitized_mbpp', path='./data/mbpp/sanitized-mbpp.jsonl', reader_cfg=sanitized_mbpp_reader_cfg, infer_cfg=sanitized_mbpp_infer_cfg, eval_cfg=sanitized_mbpp_eval_cfg, ) ]