from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator from opencompass.datasets.leval import LEvalMultidocQADataset LEval_multidocqa_reader_cfg = dict( input_columns=['context', 'question', 'length'], output_column='answer', train_split='test', test_split='test' ) LEval_multidocqa_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction after this document. These instructions may include summarizing a document, answering questions based on the document, or writing a required paragraph.'), ], round=[ dict(role='HUMAN', prompt='Document is as follows. {context}\nInstruction: {question}\nAnswer this question with {length} words.'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=64) ) LEval_multidocqa_eval_cfg = dict( evaluator=dict(type=RougeEvaluator), pred_role='BOT' ) LEval_multidocqa_datasets = [ dict( type=LEvalMultidocQADataset, abbr='LEval_multidocqa', path='L4NLP/LEval', name='multidoc_qa', reader_cfg=LEval_multidocqa_reader_cfg, infer_cfg=LEval_multidocqa_infer_cfg, eval_cfg=LEval_multidocqa_eval_cfg) ]