from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_evaluator import AccEvaluator from opencompass.datasets import InfiniteBenchmathfindDataset from opencompass.datasets.infinitebench.utils import InfiniteBench_first_number_postprocess InfiniteBench_mathfind_reader_cfg = dict( input_columns=['prefix', 'context', 'question'], output_column='answer', ) InfiniteBench_mathfind_infer_cfg = dict( prompt_template=dict( type=PromptTemplate, template=dict( begin=[ dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'), ], round=[ dict(role='HUMAN', prompt='{prefix}\n\n{context}\n\n{input}'), dict(role='BOT', prompt=''), ], )), retriever=dict(type=ZeroRetriever), inferencer=dict(type=GenInferencer, max_out_len=3) ) InfiniteBench_mathfind_eval_cfg = dict( evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=InfiniteBench_first_number_postprocess), pred_role='BOT' ) InfiniteBench_mathfind_datasets = [ dict( type=InfiniteBenchmathfindDataset, abbr='InfiniteBench_mathfind', path='./data/InfiniteBench/math_find.jsonl', reader_cfg=InfiniteBench_mathfind_reader_cfg, infer_cfg=InfiniteBench_mathfind_infer_cfg, eval_cfg=InfiniteBench_mathfind_eval_cfg) ]