categories = ['mmlu_lite_AR-XY','mmlu_lite_BN-BD','mmlu_lite_DE-DE','mmlu_lite_ES-LA','mmlu_lite_FR-FR','mmlu_lite_HI-IN','mmlu_lite_ID-ID','mmlu_lite_IT-IT','mmlu_lite_JA-JP','mmlu_lite_KO-KR','mmlu_lite_PT-BR','mmlu_lite_SW-KE','mmlu_lite_YO-NG','mmlu_lite_ZH-CN'] mmmlu_summary_groups = [ {'name': 'mmmlu_lite', 'subsets': [f'openai_m{c}' for c in categories]}, ] summarizer = dict( dataset_abbrs=[ 'openai_mmmlu_lite_AR-XY', 'openai_mmmlu_lite_BN-BD', 'openai_mmmlu_lite_DE-DE', 'openai_mmmlu_lite_ES-LA', 'openai_mmmlu_lite_FR-FR', 'openai_mmmlu_lite_HI-IN', 'openai_mmmlu_lite_ID-ID', 'openai_mmmlu_lite_IT-IT', 'openai_mmmlu_lite_JA-JP', 'openai_mmmlu_lite_KO-KR', 'openai_mmmlu_lite_PT-BR', 'openai_mmmlu_lite_SW-KE', 'openai_mmmlu_lite_YO-NG', 'openai_mmmlu_lite_ZH-CN', 'mmmlu_lite' ], summary_groups=sum([v for k, v in locals().items() if k.endswith('_summary_groups')], []), )