from mmengine.config import read_base with read_base(): from opencompass.configs.datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4_bradleyterry import ( alpacav2_datasets, ) from opencompass.configs.datasets.subjective.arena_hard.arena_hard_compare_bradleyterry import ( arenahard_datasets, ) from opencompass.configs.datasets.subjective.compassarena.compassarena_compare_bradleyterry import ( compassarena_datasets, ) from opencompass.configs.datasets.subjective.wildbench.wildbench_pair_judge_bradleyterry import ( wildbench_datasets, ) from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import ( models as lmdeploy_internlm2_5_7b_chat, ) from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import ( models as lmdeploy_internlm2_5_20b_chat, ) from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import ( models as lmdeploy_qwen2_5_7b_instruct, ) from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_14b_instruct import ( models as lmdeploy_qwen2_5_14b_instruct, ) from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import ( models as lmdeploy_qwen2_7b_instruct, ) from opencompass.models import (HuggingFace, HuggingFaceCausalLM, HuggingFaceChatGLM3, OpenAI, TurboMindModelwithChatTemplate) from opencompass.partitioners import NaivePartitioner, SizePartitioner from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner from opencompass.partitioners.sub_num_worker import \ SubjectiveNumWorkerPartitioner from opencompass.partitioners.sub_size import SubjectiveSizePartitioner from opencompass.runners import LocalRunner, SlurmSequentialRunner from opencompass.summarizers import (CompassArenaBradleyTerrySummarizer, SubjectiveSummarizer) from opencompass.tasks import OpenICLInferTask from opencompass.tasks.subjective_eval import SubjectiveEvalTask api_meta_template = dict(round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ]) # -------------Inference Stage ---------------------------------------- # For subjective evaluation, we often set do sample for models models = [ *lmdeploy_internlm2_5_7b_chat, *lmdeploy_internlm2_5_20b_chat, *lmdeploy_qwen2_5_14b_instruct, *lmdeploy_qwen2_5_7b_instruct, *lmdeploy_qwen2_7b_instruct, ] datasets = [ *alpacav2_datasets, *arenahard_datasets, *compassarena_datasets, *wildbench_datasets, ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)), ) # -------------Evalation Stage ---------------------------------------- ## ------------- JudgeLLM Configuration judge_models = [ dict( type=TurboMindModelwithChatTemplate, abbr='CompassJudger-1-32B-Instruct', path='opencompass/CompassJudger-1-32B-Instruct', engine_config=dict(session_len=16384, max_batch_size=16, tp=4), gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048), max_seq_len=16384, max_out_len=2048, batch_size=16, run_cfg=dict(num_gpus=4), ) ] ## ------------- Evaluation Configuration eval = dict( partitioner=dict( type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models, ), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)), ) ## ------------- Summary Configuration # This step fits a Bradley-Terry model (statistical model) with an option # to include style features and control variables based on groups # (group variables must be available in the input dataset for each observation). summarizer = dict( type=CompassArenaBradleyTerrySummarizer, rating_system='bradleyterry', report_pred_win_rates=True, num_bootstrap=100, num_cpu=None, with_control_vars=True, normalize_style_features=False, odds_ratio=True, ) work_dir = 'outputs/subjective/bradleyterry'