from mmengine.config import read_base from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask with read_base(): from opencompass.configs.datasets.ruler.ruler_combined_gen import \ ruler_combined_datasets from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat_1m import \ models as internlm2_5_7b_chat_1m from opencompass.configs.summarizers.groups.ruler import \ ruler_summary_groups datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) models = internlm2_5_7b_chat_1m work_dir = './outputs/ruler' infer = dict( partitioner=dict(type=NumWorkerPartitioner, num_worker=2), runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask), retry=5), ) eval = dict( partitioner=dict(type=NaivePartitioner), runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=OpenICLEvalTask)), ) summarizer = dict( dataset_abbrs=['ruler_4k', 'ruler_8k', 'ruler_16k', 'ruler_32k'], summary_groups=sum( [v for k, v in locals().items() if k.endswith('_summary_groups')], []), )