from mmengine.config import read_base from opencompass.models.turbomind_api import TurboMindAPIModel with read_base(): # choose a list of datasets from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import \ ceval_datasets from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import \ gsm8k_datasets from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import \ humaneval_datasets from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import \ WiC_datasets from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import \ triviaqa_datasets # and output the results in a choosen format from opencompass.configs.summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) internlm_chat_20b = dict( type=TurboMindAPIModel, abbr='internlm-chat-20b-turbomind', api_addr='http://0.0.0.0:23333', max_out_len=100, max_seq_len=2048, batch_size=8, run_cfg=dict(num_gpus=1, num_procs=1), ) internlm_chat_7b = dict( type=TurboMindAPIModel, abbr='internlm-chat-7b-turbomind', api_addr='http://0.0.0.0:23333', max_out_len=100, max_seq_len=2048, batch_size=16, run_cfg=dict(num_gpus=1, num_procs=1), ) models = [internlm_chat_20b]