from mmengine.config import read_base from opencompass.models.turbomind_api import TurboMindAPIModel with read_base(): # choose a list of datasets from opencompass.configs.datasets.ceval.ceval_gen_5f30c7 import \ ceval_datasets from opencompass.configs.datasets.crowspairs.crowspairs_gen_381af0 import \ crowspairs_datasets from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import \ gsm8k_datasets from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from opencompass.configs.datasets.race.race_gen_69ee4f import race_datasets from opencompass.configs.datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import \ WiC_datasets from opencompass.configs.datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import \ WSC_datasets from opencompass.configs.datasets.triviaqa.triviaqa_gen_2121ce import \ triviaqa_datasets # and output the results in a choosen format from opencompass.configs.summarizers.medium import summarizer datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) meta_template = dict(round=[ dict(role='HUMAN', begin='<|User|>:', end='\n'), dict(role='BOT', begin='<|Bot|>:', end='\n', generate=True), ], eos_token_id=103028) internlm_chat_20b = dict( type=TurboMindAPIModel, abbr='internlm-chat-20b-turbomind', api_addr='http://0.0.0.0:23333', api_key='internlm-chat-20b', # api_key max_out_len=100, max_seq_len=2048, batch_size=8, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='', ) internlm_chat_7b = dict( type=TurboMindAPIModel, abbr='internlm-chat-7b-turbomind', api_addr='http://0.0.0.0:23333', api_key='interlm-chat-7b', # api_key max_out_len=100, max_seq_len=2048, batch_size=16, meta_template=meta_template, run_cfg=dict(num_gpus=1, num_procs=1), end_str='', ) models = [internlm_chat_20b]