from copy import deepcopy from mmengine.config import read_base with read_base(): from opencompass.configs.datasets.agieval.agieval_gen_64afd3 import \ agieval_datasets from opencompass.configs.datasets.bbh.bbh_gen_5b92b0 import bbh_datasets from opencompass.configs.datasets.gsm8k.gsm8k_gen_1d7fe4 import \ gsm8k_datasets from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import \ humaneval_datasets from opencompass.configs.datasets.math.math_evaluatorv2_gen_cecb31 import \ math_datasets from opencompass.configs.datasets.mbpp.deprecated_sanitized_mbpp_gen_1e1056 import \ sanitized_mbpp_datasets from opencompass.configs.datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets from opencompass.configs.models.hf_internlm.hf_internlm2_chat_7b import \ models as hf_internlm2_chat_7b_model from opencompass.configs.models.hf_internlm.hf_internlm2_chat_20b import \ models as hf_internlm2_chat_20b_model from opencompass.configs.summarizers.internlm2_keyset import summarizer work_dir = './outputs/internlm2-chat-keyset/' _origin_datasets = sum( [v for k, v in locals().items() if k.endswith('_datasets')], []) _origin_models = sum([v for k, v in locals().items() if k.endswith('_model')], []) _vanilla_datasets = [deepcopy(d) for d in _origin_datasets] _vanilla_models = [] for m in _origin_models: m = deepcopy(m) if 'meta_template' in m and 'round' in m['meta_template']: round = m['meta_template']['round'] if any(r['role'] == 'SYSTEM' for r in round): new_round = [r for r in round if r['role'] != 'SYSTEM'] print( f'WARNING: remove SYSTEM round in meta_template for {m.get("abbr", None)}' ) m['meta_template']['round'] = new_round _vanilla_models.append(m) datasets = _vanilla_datasets models = _vanilla_models