Compare commits

...

390 Commits
0.2.5 ... main

Author SHA1 Message Date
Yu Sun
d572761cef
[Dataset] Add Smolinstruct configs (#2127)
Some checks failed
lint / lint (push) Has been cancelled
* 0-shot Smolinstruct

Add 0-shot evaluation and postprocess functions for Smolinstruct

* fix acc postprocessor

* update 0-shot acc postprocessor

* rename 0-shot
2025-05-29 14:09:08 +08:00
Linchen Xiao
408f5caff4
[Dataset] Add SuperGPQA subfield configs (#2124)
* update

* fix lint

* fix lint

* update precommit

* update precommit

* fix lint
2025-05-28 14:12:58 +08:00
Myhs_phz
6f3c670b99
add qwen3 lmdeply (#2126) 2025-05-27 19:41:13 +08:00
zhulinJulia24
c3779ebfc1
[ci] update dlc setting (#2112) 2025-05-22 16:47:57 +08:00
Songyang Zhang
aa2b89b6f8
[Update] Add CascadeEvaluator with Data Replica (#2022)
* Update CascadeEvaluator

* Update CascadeEvaluator

* Update CascadeEvaluator

* Update Config

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update
2025-05-20 16:46:55 +08:00
Dongsheng Zhu
7a7a4517ab
[Update] History code bench pass@k update (#2102)
* bigcodebench

* humaneval

* humanevalx

* humanevalx

* livecodebench

* mbpp

* humaneval_plus

* fix bug

* template

* max_out fix

* template update
2025-05-19 17:03:33 +08:00
kkscilife
8c0ccf9a6b
[CI] Fix Lint error (#2103) 2025-05-16 15:36:45 +08:00
kkscilife
6f3b6a5d12
[CI] Add gitleaks check (#2101) 2025-05-16 14:34:57 +08:00
tcheng
3d1760aba2
[Dataset] Add Scieval (#2089)
* style: pass all formatting hooks (yapf & quote fixer)

* revise name:Add Lifescience Sub-set Support for MMLU & SciEval (datasets + configs + loader)

* revise name:Add Lifescience SciEval (datasets + configs + loader+dataset-index.yml)

* Add Lifescience SciEval (datasets + configs + loader+dataset-index.yml)

* all categories of SciEval (datasets + configs + loader+dataset-index.yml)

* revise name:Add Lifescience SciEval (datasets + configs + loader+dataset-index.yml)

* revise :SciEval 5shot

---------

Co-authored-by: root <tangcheng231@mails.ucas.edu.cn>
2025-05-14 10:25:03 +08:00
Wei Li
b84518c656
[Dataset] Support MedMCQA and MedBullets benchmark (#2054)
* support medmcqa and medbullets benchmark

* Add Medbullets data folder for benchmark support

* revise gen name

* revise config file & remove csv file & add dataset info to dataset-index.yml

* remove csv file

* remove print in medbullets.py

* revise class name

* update_oss_info

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-05-13 17:10:50 +08:00
zhulinJulia24
d60f59dcab
[CI] update baseline and fix lmdeploy version (#2098)
* update

* update

* update

* update

* update

* update
2025-05-13 14:01:47 +08:00
bittersweet1999
9eaa1f6fec
Update icl_judge_evaluator.py (#2095) 2025-05-13 10:44:24 +08:00
Linchen Xiao
d590f557bb
[Update] OpenaiSDK handle empty content (#2096) 2025-05-12 19:38:30 +08:00
yuehua-s
c492e49e79
[Update] Add o4 in OpenaiSDK (#2083)
* feature:1.add o4-mini;2.o3 or o4-mini only support temperature==1

* feature:change 4o-mini to 4o

---------

Co-authored-by: yuehuazhang <yuehuazhang@tencent.com>
2025-05-12 18:39:44 +08:00
Dongsheng Zhu
2c79dc5227
[Dataset] Add human_eval/mbpp pro (#2092)
* add bench

* update

* bug fix

* time update

* add index

* fix repeat bug
2025-05-12 18:38:13 +08:00
huihui1999
345674f700
[Dataset] Add SciknowEval Dataset (#2070)
* first

* first

* first

* first

* SciKnowEval

* fix hash

* fix dataset-index & use official llm_judge_postprocess

* fix dataset-index.yml

* use official llmjudge_postprocess

* fix lint

* fix lint

* fix lint

* fix lint

* fix lint

* merge with main

---------

Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2025-05-12 17:23:44 +08:00
Kun Yuan
8aa18df368
[Dataset] HLE Biomedical version support (#2080)
* HLE Biomedical version support

* set up default category value for hle
2025-05-12 10:14:11 +08:00
huihui1999
44a7024ed5
[Dataset] MedCalc_Bench (#2072)
* MedCalc_Bench

* MedCal_Bench

* add hash

* fix hash

* fix comments &dataset-index yml

* fix lint

* fix lint

* fix lint

* fix lint

* fix lint

---------

Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2025-05-09 16:58:55 +08:00
Linchen Xiao
508e2b0cb2
[Update] Set load_from_cache_file to False (#2085) 2025-05-09 15:21:47 +08:00
Kun Yuan
7bdd3c1904
[Dataset] MMLU_Pro Biomedical Version Support (#2081) 2025-05-09 15:07:26 +08:00
Jin Ye
6097186a95
[Datasets] MedQA, ProteinLMBench; Add Models: huatuogpt, baichuanM1 (#2064)
* Add Datasets: MedQA, ProteinLMBench; Add Models: huatuogpt, baichuanM1

* Fix bugs for MedQA. Add info in dataset-index

* Add version code for MedQA and ProteinLMBench

* Add version code for MedQA and ProteinLMBench
2025-05-09 14:47:44 +08:00
Linchen Xiao
d72df59363
[Revert] Add Lifescience Sub-set Support for SciEval (#2059) (#2087)
This reverts commit c5048bfec7.
2025-05-09 14:46:27 +08:00
tcheng
c5048bfec7
[Dataset] Add Lifescience Sub-set Support for SciEval (#2059)
* style: pass all formatting hooks (yapf & quote fixer)

* revise name:Add Lifescience Sub-set Support for MMLU & SciEval (datasets + configs + loader)

* revise name:Add Lifescience SciEval (datasets + configs + loader+dataset-index.yml)

* Add Lifescience SciEval (datasets + configs + loader+dataset-index.yml)

---------

Co-authored-by: root <tangcheng231@mails.ucas.edu.cn>
2025-05-09 14:31:12 +08:00
huihui1999
a7f3ac20b2
[Dataset] Add CARDBiomedBench (#2071)
* CARDBiomedBench

* fix hash

* fix dataset-index

* use official llmjudge postprocess

* use official llmjudge_postprocess

* fix lint

* fix init
2025-05-08 19:44:46 +08:00
Mo Li
ff3275edf0
[Update] Add Long-Context configs for Gemma, OREAL, and Qwen2.5 models (#2048)
* [Update] Update Gemma, Oreal, Qwen Config

* fix lint
2025-05-08 19:06:56 +08:00
Wei Li
a685ed7daf
[Dataset] Add nejm ai benchmark (#2063)
* support nejm ai benchmark

* add dataset files

* revise gen name

* revise gen name

* revise class name & remove csv file & add dataset-index.yml info

* update

* update

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-05-08 16:44:05 +08:00
Jiahao Xu
9ec23c145b
[Datasets] Add ClinicBench, PubMedQA and ScienceQA (#2061)
* Add ClinicBench

* Add PubMedQA & ScienceQA & ClinicBench

* Add PubMedQA & ScienceQA & ClinicBench

* Update datasets_info & hf_path

* Update hf_path
2025-05-08 16:25:43 +08:00
Dongsheng Zhu
ba0e32292c
[Feature] Support InternSandbox (#2049)
* internsandbox init

* internsandbox

* dataset_index

* dataset_index_add
2025-05-07 16:42:09 +08:00
谢昕辰
43b2c4ed76
[Fix] Update lawbench data path (#2037) 2025-05-07 16:18:43 +08:00
Dongsheng Zhu
d62b69aaef
[Fix] Fix InternVL model config (#2068)
* intervl-8b&38b

* intervl adjustment

* internvl fix
2025-05-07 15:51:18 +08:00
Linchen Xiao
af8432e1d6
[Update] OpenAI SDK model reasoning content (#2078)
* update

* update

* update
2025-05-07 14:06:40 +08:00
bittersweet1999
ddc9cc0afb
[Add] add a config to Judge dataset all (#2077)
* fix pip version

* fix pip version

* add judgedatasetall

* add judgedatasetall

* add judgedatasetall
2025-05-07 10:57:23 +08:00
bittersweet1999
37cbaf8d92
[Add] Add Judgerbenchv2 (#2067)
* fix pip version

* fix pip version

* add judgerbenchv2

* Update __init__.py
2025-04-30 17:12:34 +08:00
Taolin Zhang
b6148aa198
add Judgebench (#2066)
* add rewardbench

* add rewardbench

* add rmb datasets

* add rmb datasets

* add judgebench

* add judgebench
2025-04-30 15:01:10 +08:00
bittersweet1999
527a80947b
[Add] Add writingbench (#2028)
* fix pip version

* fix pip version

* add writingbench

* add writingbench

* add writingbench

* add writingbench
2025-04-29 16:29:32 +08:00
Taolin Zhang
8c74e6a39e
add RMB Bench (#2056)
* add rewardbench

* add rewardbench

* add rmb datasets

* add rmb datasets
2025-04-27 16:26:01 +08:00
Linchen Xiao
e8bc8c1e8c
[Bug] Concat OpenaiSDK reasoning content (#2041)
* [Bug] Concat OpenaiSDK reasoning content

* [Bug] Concat OpenaiSDK reasoning content

* update

* update
2025-04-25 14:10:33 +08:00
Junnan Liu
97010dc4ce
[Update] Update dataset repeat concatenation (#2039) 2025-04-23 16:16:28 +08:00
Linchen Xiao
dcbf899369
[Bug] Fix SmolInsturct logger import (#2036) 2025-04-23 11:10:30 +08:00
Linchen Xiao
bf74f26603
[Update] Safe SmolInstruct meteor calculation (#2033) 2025-04-22 18:27:48 +08:00
Linchen Xiao
455bb05d1b
[Update] Update dataset configs (#2030)
* [Update] Update dataset configs

* Fix lint
2025-04-21 18:55:06 +08:00
Taolin Zhang
c69110361b
[Add] add rewardbench (#2029)
* add rewardbench

* add rewardbench
2025-04-21 17:18:51 +08:00
JuchengHu
a2093a81ef
[Dataset] Matbench (#2021)
* add support for matbench

* fix dataset path

* fix data load

* fix

* fix lint

---------

Co-authored-by: Jucheng Hu <jucheng.hu.20@ucl.ac.uk>
Co-authored-by: Myhs-phz <demarcia2014@126.com>
2025-04-21 15:50:47 +08:00
Linchen Xiao
b2da1c08a8
[Dataset] Add SmolInstruct, Update Chembench (#2025)
* [Dataset] Add SmolInstruct, Update Chembench

* Add dataset metadata

* update

* update

* update
2025-04-18 17:21:29 +08:00
Linchen Xiao
65ff602cf5
[Update] Fix LLM Judge metrics cacluation & Add reasoning content concat to OpenAI SDK 2025-04-15 11:33:16 +08:00
Myhs_phz
75e7834b59
[Feature] Add Datasets: ClimateQA,Physics (#2017)
* feat ClimateQA

* feat PHYSICS

* fix

* fix

* fix

* fix
2025-04-14 20:18:47 +08:00
Linchen Xiao
6a6a1a5c0b
[Feature] LLM Judge sanity check (#2012)
* update

* update
2025-04-11 19:01:39 +08:00
bittersweet1999
3f50b1dc49
[Fix] fix order bug Update arena_hard.py (#2015) 2025-04-11 16:59:40 +08:00
Junnan Liu
20660ab507
[Fix] Fix compare error when k is list in base_evaluator (#2010)
* fix gpass compare error of list k

* fix compare error in 177
2025-04-10 19:47:21 +08:00
Linchen Xiao
12213207b6
[Refactor] Refactorize openicl eval task (#1990)
* [Refactor] Refactorize openicl eval task

* update
2025-04-09 15:52:23 +08:00
zhulinJulia24
6ac9b06bc2
[ci] update baseline for kernal change of vllm and lmdeploy (#2011)
* update

* update

* update

* update

* update

* update

* update
2025-04-09 14:09:35 +08:00
Linchen Xiao
a05f9da134
[Feature] Make dump-eval-details default behavior (#1999)
* Update

* update

* update
2025-04-08 14:42:26 +08:00
Myhs_phz
fd82bea747
[Fix] OpenICL Math Evaluator Config (#2007)
* fix

* fix recommended

* fix

* fix

* fix

* fix
2025-04-08 14:38:35 +08:00
Linchen Xiao
bb58cfc85d
[Feature] Add CascadeEvaluator (#1992)
* [Feature] Add CascadeEvaluator

* update

* updat
2025-04-08 11:58:14 +08:00
Jin Ye
b564e608b1
[Dataset] Add MedXpertQA (#2002)
* Add MedXpertQA

* Add MedXpertQA

* Add MedXpertQA

* Fix lint

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-04-08 10:44:48 +08:00
shijinpjlab
828fb745c9
[Dataset] Update dingo 1.5.0 (#2008)
Co-authored-by: shiin <shijin@pjlab.org.cn>
2025-04-07 17:21:15 +08:00
zhulinJulia24
f982d6278e
[CI] fix baseline score (#2000)
* update

* update

* update

* update

* update

* update

* update

* updaste

* update

* update

* updaste

* updaste

* update

* update

* update

* update

* update

* update

* update

* update
2025-04-03 19:32:36 +08:00
Myhs_phz
3a9a384173
[Doc] Fix links between zh & en (#2001)
* test

* test

* test
2025-04-03 17:37:53 +08:00
Myhs_phz
9b489e9ea0
[Update] Revert math500 dataset configs (#1998) 2025-04-03 15:11:02 +08:00
Linchen Xiao
dc8deb6af0
[BUMP] Bump version to 0.4.2 (#1997) 2025-04-02 17:47:15 +08:00
liushz
32d6859679
[Feature] Add olymmath dataset (#1982)
* Add olymmath dataset

* Add olymmath dataset

* Add olymmath dataset

* Update olymmath dataset
2025-04-02 17:34:07 +08:00
zhulinJulia24
97236c8e97
[CI] Fix baseline score (#1996)
* update

* update

* update

* update
2025-04-02 14:25:16 +08:00
Linchen Xiao
f66b0b347a
[Update] Requirements update (#1993) 2025-04-02 12:03:45 +08:00
Dongsheng Zhu
330a6e5ca7
[Update] Add Intervl-8b&38b model configs (#1978) 2025-04-01 11:51:37 +08:00
Myhs_phz
f71eb78c72
[Doc] Add TBD Token in Datasets Statistics (#1986)
* feat

* doc

* doc

* doc

* doc
2025-03-31 19:08:55 +08:00
Linchen Xiao
0f46c35211
[Bug] Aime2024 config fix (#1974)
Some checks failed
lint / lint (push) Has been cancelled
* [Bug] Aime2024 config fix

* fix
2025-03-25 17:57:11 +08:00
Myhs_phz
6118596362
[Feature] Add recommendation configs for datasets (#1937)
* feat datasetrefine drop

* fix datasets in fullbench_int3

* fix

* fix

* back

* fix

* fix and doc

* feat

* fix hook

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* doc

* fix

* fix

* Update dataset-index.yml
2025-03-25 14:54:13 +08:00
Linchen Xiao
07930b854a
[Update] Add Korbench config with no max_out_len (#1968)
Some checks are pending
lint / lint (push) Waiting to run
* Add Korbench no max_out_len

* Add Korbench no max_out_len
2025-03-24 18:38:06 +08:00
Myhs_phz
37307fa996
[Update] Add QWQ32b model config (#1959)
Some checks are pending
lint / lint (push) Waiting to run
* feat qwq-32b

* fix

* feat phi_4

---------

Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2025-03-24 14:51:39 +08:00
Linchen Xiao
db96161a4e
[Update] Add SuperGPQA subset metrics (#1966) 2025-03-24 14:25:12 +08:00
Linchen Xiao
aa05993922
[Update] Add dataset configurations of no max_out_len (#1967)
* [Update] Add dataset configurations of no max_out_len

* update test torch version

* update test torch version

* update test torch version

* update test torch version
2025-03-24 14:24:12 +08:00
Linchen Xiao
64128916d0
[Update] Increase memory size for CPU job of VOLC Runner (#1962)
* [Update] Increase memory size for CPU job of VOLC Runner

* [Update] Increase memory size for CPU job of VOLC Runner
2025-03-24 11:21:14 +08:00
Dongsheng Zhu
8a5029b121
[Feature] Add MultiPL-E & Code Evaluator (#1963)
* multiple_code develop

* multiple_code update

* comments upadate

* index upadate
2025-03-21 20:09:25 +08:00
Linchen Xiao
b9de8b0e2b
[Update] Unset disallowed_special token for Openai model (#1960) 2025-03-18 20:24:07 +08:00
Songyang Zhang
c98599271b
[Update] Update OlympiadBench and Update LLM Judge (#1954) 2025-03-18 20:15:20 +08:00
Jason Cheung
5d2d253d83
[BUG] Fix model_kwargs pass logic for vllm (#1958) 2025-03-18 20:08:15 +08:00
Linchen Xiao
0b7f76e193
[Bug] Fix Summarizer logic (#1953) 2025-03-17 18:25:08 +08:00
Yufeng Zhao
15c825a51a
[Update] Bbeh harmony summarizer added (#1951)
* bbeh

* bbeh

* fix_smallbugs_bbeh

* removeprint

* harmonic

* update_summerizer

* harmonic-tested

* harmonic-tested

* clean

* clean

* cleaned_rebased

---------

Co-authored-by: yufeng zhao <zhaoyufeng@pjlab.org.cn>
2025-03-17 17:19:56 +08:00
Linchen Xiao
854c6bf025
[Update] Update requirement and base evaluator 2025-03-13 20:52:50 +08:00
Linchen Xiao
1c60e3a0f6
[Update] Add configurations for llmjudge dataset (#1940)
* Add configurations for llmjudge dataset

* update
2025-03-13 17:30:04 +08:00
liushz
709bc4af0e
[Update] Add AIME2025 oss info (#1936)
* Support OlympiadBench Benchmark

* Support OlympiadBench Benchmark

* Support OlympiadBench Benchmark

* update dataset path

* Update olmpiadBench

* Update olmpiadBench

* Update olmpiadBench

* Add HLE dataset

* Add HLE dataset

* Add HLE dataset

* Add AIME2025 oss info

---------

Co-authored-by: sudanl <sudanl@foxmail.com>
2025-03-12 18:41:16 +08:00
Yufeng Zhao
bc2969dba8
[Feature] Add support for BBEH dataset (#1925)
* bbeh

* bbeh

* fix_smallbugs_bbeh

* removeprint

* results

---------

Co-authored-by: yufeng zhao <zhaoyufeng@pjlab.org.cn>
2025-03-12 10:53:31 +08:00
Kangreen
59e49aedf1
[Feature] Support SuperGPQA (#1924)
* support supergpqa

* remove unnecessary code

* remove unnecessary code

* Add Readme

* Add Readme

* fix lint

* fix lint

* update

* update

---------

Co-authored-by: mkj3085003 <mkj3085003@gmail.com>
Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-03-11 19:32:08 +08:00
Linchen Xiao
e403fd21be
[Fix] Fix math-verify evaluator (#1917)
* update

* update

* update
2025-03-11 17:35:04 +08:00
Linchen Xiao
cbf84fb33c
[Feature] Update LLM Evaluation for MMLU-Pro (#1923) 2025-03-07 21:01:20 +08:00
Myhs_phz
570c30cf1b
[Fix] Fix CLI option for results persistence (#1920)
* fix

* fix

* fix
2025-03-07 18:24:30 +08:00
Shudong Liu
277d7946f5
[Fix] Fix typo in deepseed_r1.md (#1916) 2025-03-05 19:37:22 +08:00
Myhs_phz
1585c0adbe
[Feature] Evaluation Results Persistence (#1894)
* feat results_station.py

* lint

* feat save_to_station

* feat result_station.py and lint

* feat

* fix

* fix and lint

* fix

* fix subjective processing

* fix

* fix

* style function name

* lint
2025-03-05 18:33:34 +08:00
Myhs_phz
54324657f0
[Docs] Results persistance (#1908)
* feat persistance.md

* doc

* doc

* lint

* doc

* fix

* doc
2025-03-05 18:23:54 +08:00
Dongsheng Zhu
fff2d51440
[Update] Code evaluation alignment (#1909)
* code alignment

* update oss md5

* bigcodebench update

* lint

* lint_

* lint yapf
2025-03-04 18:49:38 +08:00
Linchen Xiao
5547fd1592
[Bump] Bump version to 0.4.1 2025-03-04 18:26:14 +08:00
liushz
198c08632e
[Feature] Add HLE (Humanity's Last Exam) dataset (#1902)
* Support OlympiadBench Benchmark

* Support OlympiadBench Benchmark

* Support OlympiadBench Benchmark

* update dataset path

* Update olmpiadBench

* Update olmpiadBench

* Update olmpiadBench

* Add HLE dataset

* Add HLE dataset

* Add HLE dataset

---------

Co-authored-by: sudanl <sudanl@foxmail.com>
2025-03-04 16:42:37 +08:00
Songyang Zhang
c84bc18ac1
[Update] Support OlympiadBench-Math/OmniMath/LiveMathBench-Hard (#1899)
* [Update] Support OlympiadBench-Math/OmniMath/LiveMathBench-Hard with LLM Verify

* Update

* Update

* Update DeepSeek-R1 example

* Update DeepSeek-R1 example

* Update DeepSeek-R1 example
2025-03-03 18:56:11 +08:00
Junnan Liu
f0809fe6f6
[Update] Fix Hard Configs With General GPassK (#1906)
* support dataset repeat and g-pass compute for each evaluator

* fix pre-commit errors

* delete print

* delete gpassk_evaluator and fix potential errors

* change `repeat` to `n`

* fix `repeat` to `n` in openicl_eval

* update doc for multi-run and g-pass

* update latex equation in doc

* update eng doc for multi-run and g-pass

* update datasets.md

* update datasets.md

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation in zh_cn user_guides

* mmodify pre-commit-zh-cn

* recover pre-commit and edit math expr in doc

* del [TIP]

* del cite tag in doc

* del extract_model param in livemathbench config

* fix livemathbench hard configs
2025-03-03 18:17:15 +08:00
Linchen Xiao
6a573f671b
[Fix] Fix compatible issue 2025-03-03 15:35:57 +08:00
Junnan Liu
73c80953c6
[Feature] Support Dataset Repeat and G-Pass Compute for Each Evaluator (#1886)
* support dataset repeat and g-pass compute for each evaluator

* fix pre-commit errors

* delete print

* delete gpassk_evaluator and fix potential errors

* change `repeat` to `n`

* fix `repeat` to `n` in openicl_eval

* update doc for multi-run and g-pass

* update latex equation in doc

* update eng doc for multi-run and g-pass

* update datasets.md

* update datasets.md

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation in zh_cn user_guides

* mmodify pre-commit-zh-cn

* recover pre-commit and edit math expr in doc

* del [TIP]

* del cite tag in doc

* del extract_model param in livemathbench config
2025-02-26 19:43:12 +08:00
zhulinJulia24
6042b88e58
[CI] update dailytest sceduler and baseline's score(#1898) 2025-02-26 19:04:01 +08:00
Linchen Xiao
bdb2d46f59
[Feature] Add general math, llm judge evaluator (#1892)
* update_doc

* update llm_judge

* update README

* update md file name
2025-02-26 15:08:50 +08:00
Songyang Zhang
fd6fbf01a2
[Update] Support AIME-24 Evaluation for DeepSeek-R1 series (#1888)
* Update

* Update

* Update

* Update
2025-02-25 20:34:41 +08:00
Junnan Liu
22a33d8759
[Update] Update LiveMathBench Hard Configs (#1826)
* support G-Pass@k and livemathbench

* fix bugs

* fix comments of GPassKEvaluator

* update saved details of GPassKEvaluator

* update saved details of GPassKEvaluator

* fix eval api configs & update openai_api for ease of debugging

* update huggingface path

* fix method name of G-Pass@k

* fix default value of eval_model_name

* refactor G-Pass@k evaluator

* log generation params for each backend

* fix evaluation resume

* add notimplementerror

* update livemathbench-hard configs

* remove max_out_len from livemathbench_hard_greedy_gen_9befbf.py

* remove max_out_len from livemathbench_hard_gen_9befbf.py

* rename livemathbench_hard_gen_9befbf.py to livemathbench_hard_gen_353ae7.py

* rename livemathbench_hard_greedy_gen_9befbf.py to livemathbench_hard_greedy_gen_353ae7.py

* update livemathbench_gen_9befbf.py

* remove whitespace

* upload livemathbench hard configs
2025-02-25 17:24:36 +08:00
Dongsheng Zhu
465e93e10e
[Update] Academic bench llm judge update (#1876)
* BigCodeBench update

* update LCBench

* update LCBench 2

* update code

* academicBench update

* academic bench ifeval&math update

* generic_llmjudge_aime_academic_postprocess delete

* aime delete

* postprocessors update

* ifeval delete

* update work_dir

* linting

* linting double-quote-string-fixer

* r1-distill out_len update

* fix lint

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-02-24 15:45:24 +08:00
Junnan Liu
046b6f75c6
[Update] Update Greedy Config & README of LiveMathBench (#1862)
* support omni-math

* update config

* upload README

* Delete opencompass/configs/datasets/omni_math/__init__.py

* update greedy config & README of LiveMathBench

* update intro for  max_out_len

* rename livemathbench greedy confi

* delete greedy config

---------

Co-authored-by: liushz <qq1791167085@163.com>
2025-02-20 19:47:04 +08:00
Linchen Xiao
d7daee6e25
[Update] OpenAI model update, bigcodebench update (#1879)
* [Update] Openai model update, bigcodebench update

* update
2025-02-20 19:33:25 +08:00
Linchen Xiao
27c916661d
[Feature] Math Verify with model post_processor (#1881)
* update

* [Feature] Update model post_processor

* update

* update

* update
2025-02-20 19:32:12 +08:00
zhulinJulia24
bc22749fd8
[CI] update daily test scores (#1870)
* update

* Update daily-run-test.yml

* Update dlc.py
2025-02-20 14:08:18 +08:00
bittersweet1999
f407930475
[Feature] Support subjective evaluation for reasoning model (#1868)
* fix pip version

* fix pip version

* add subeval for reasoning model

* add subeval for reasoning model

* update configs

* update config

* update config

* update config

* update files
2025-02-20 12:19:46 +08:00
Myhs_phz
68a9838907
[Feature] Add list of supported datasets at html page (#1850)
* feat dataset-index.yml and stat.py

* fix

* fix

* fix

* feat url of paper and config file

* doc all supported dataset list

* docs zh and en

* docs README zh and en

* docs new_dataset

* docs new_dataset
2025-02-14 16:17:30 +08:00
Dongsheng Zhu
3fd8b4e0cd
[Update] Update BigCodeBench & LCBench load path (#1857)
* BigCodeBench update

* update LCBench

* update LCBench 2

* update code
2025-02-08 15:15:47 +08:00
Pablo Hinojosa
9c2e6a192c
[Fix] Update broken links in README.md (#1852) 2025-02-07 15:41:08 +08:00
zhulinJulia24
ffc04cf650
[CI] Update daily-run-test.yml (#1854) 2025-02-07 14:40:16 +08:00
Linchen Xiao
862bf78464
[Demo] Internlm3 math500 thinking demo (#1846)
* [Demo] Add demo for Internlm3 math500 thinking

* [Demo] Add demo for Internlm3 math500 thinking

* update max_out_len

* update start instruction
2025-01-24 14:56:41 +08:00
Shudong Liu
412199f802
[Feature] Support OlympiadBench Benchmark (#1841)
* Support OlympiadBench Benchmark

* Support OlympiadBench Benchmark

* Support OlympiadBench Benchmark

* update dataset path

* Update olmpiadBench

* Update olmpiadBench

* Update olmpiadBench

---------

Co-authored-by: liushz <qq1791167085@163.com>
2025-01-24 10:00:01 +08:00
Junnan Liu
70f2c963d3
[Feature] Support Omni-Math (#1837)
* support omni-math

* update config

* upload README

* Delete opencompass/configs/datasets/omni_math/__init__.py

---------

Co-authored-by: liushz <qq1791167085@163.com>
2025-01-23 18:36:54 +08:00
Linchen Xiao
35ec307c6b
[Bump] Bump version to 0.4.0 (#1838) 2025-01-22 11:41:46 +08:00
Linchen Xiao
03415b2a66
[Fix] Update max_out_len logic for OpenAI model (#1839) 2025-01-21 15:46:14 +08:00
Linchen Xiao
a6193b4c02
[Refactor] Code refactoarization (#1831)
* Update

* fix lint

* update

* fix lint
2025-01-20 19:17:38 +08:00
Jishnu Nair
ffdc917523
[Doc] Installation.md update (#1830) 2025-01-17 11:08:09 +08:00
Myhs_phz
70da9b7776
[Update] Update method to add dataset in docs (#1827)
* create new branch

* docs new_dataset.md zh

* docs new_dataset.md zh and en
2025-01-17 11:07:19 +08:00
Linchen Xiao
531643e771
[Feature] Add support for InternLM3 (#1829)
* update

* update

* update

* update
2025-01-16 14:28:27 +08:00
Alexander Lam
7f2aeeff26
added predicted win rates reporting to bradley terry subj eval methods with an option to switch between win rates and elo ratings (#1815) 2025-01-10 18:20:25 +08:00
zhulinJulia24
121d482378
[CI] Fix path conflict (#1814)
* update

* Update pr-run-test.yml

* update
2025-01-09 20:16:08 +08:00
zhulinJulia24
abdcee68f6
[CI] Update daily test metrics threshold (#1812)
* Update daily-run-test.yml

* Update pr-run-test.yml

* update

* update

* update

* updaet

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2025-01-09 18:16:24 +08:00
Zhao Qihao
e039f3efa0
[Feature] Support MMLU-CF Benchmark (#1775)
* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* Update mmlu-cf

* Update mmlu-cf

* Update mmlu-cf

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* [Feature] Support MMLU-CF Benchmark

* Remove outside configs

---------

Co-authored-by: liushz <qq1791167085@163.com>
2025-01-09 14:11:20 +08:00
Songyang Zhang
f1e50d4bf0
[Update] Update LiveMathBench (#1809)
* Update LiveMathBench

* Update New O1 Evaluation

* Update O1 evaluation
2025-01-07 19:16:12 +08:00
Songyang Zhang
8fdb72f567
[Update] Update o1 eval prompt (#1806)
* Update XML prediction post-process

* Update LiveMathBench

* Update LiveMathBench

* Update New O1 Evaluation
2025-01-07 00:14:32 +08:00
Alexander Lam
f871e80887
[Feature] Add Bradley-Terry Subjective Evaluation method to Arena Hard dataset (#1802)
* added base_models_abbrs to references (passed from LMEvaluator); added bradleyterry subjective evaluation method for wildbench, alpacaeval, and compassarena datasets; added all_scores output files for reference in CompassArenaBradleyTerrySummarizer;

* added bradleyterry subjective evaluation method to arena_hard dataset
2025-01-03 16:33:43 +08:00
Linchen Xiao
117dc500ad
[Feature] Add Longbenchv2 support (#1801)
* Create eval_longbenchv2.py

* Create longbenchv2_gen.py

* Update __init__.py

* Create longbenchv2.py

* Update datasets_info.py

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: abrohamLee <146956824+abrohamLee@users.noreply.github.com>
2025-01-03 12:04:29 +08:00
Linchen Xiao
f3220438bc
[BUMP] Bump version to 0.3.9 (#1790) 2024-12-31 16:52:47 +08:00
liushz
9c980cbc62
[Feature] Add LiveStemBench Dataset (#1794)
* [Fix] Fix vllm max_seq_len parameter transfer

* [Fix] Fix vllm max_seq_len parameter transfer

* Add livestembench dataset

* Add livestembench dataset

* Add livestembench dataset

* Update livestembench_gen_3e3c50.py

* Update eval_livestembench.py

* Update eval_livestembench.py
2024-12-31 15:17:39 +08:00
Songyang Zhang
fc0556ec8e
[Fix] Fix generic_llm_evaluator output_path (#1798)
* Fix output_path

* Add Logger
2024-12-31 13:05:05 +08:00
Alexander Lam
dc6035cfcb
[Feature] Added Bradley-Terry subjective evaluation 2024-12-31 11:01:23 +08:00
Songyang Zhang
98435dd98e
[Feature] Update o1 evaluation with JudgeLLM (#1795)
* Update Generic LLM Evaluator

* Update o1 style evaluator
2024-12-30 17:31:00 +08:00
Junnan Liu
8e8d4f1c64
[Feature] Support G-Pass@k and LiveMathBench (#1772)
* support G-Pass@k and livemathbench

* fix bugs

* fix comments of GPassKEvaluator

* update saved details of GPassKEvaluator

* update saved details of GPassKEvaluator

* fix eval api configs & update openai_api for ease of debugging

* update huggingface path

* fix method name of G-Pass@k

* fix default value of eval_model_name

* refactor G-Pass@k evaluator

* log generation params for each backend

* fix evaluation resume

* add notimplementerror
2024-12-30 16:59:39 +08:00
Linchen Xiao
42b54d6bb8
[Update] Add 0shot CoT config for TheoremQA (#1783) 2024-12-27 16:17:27 +08:00
bittersweet1999
357ce8c7a4
[Fix] Fix model summarizer abbr (#1789)
* fix pip version

* fix pip version

* fix model summarizer abbr

---------

Co-authored-by: root <bittersweet1999>
2024-12-27 14:45:08 +08:00
Linchen Xiao
ae9efb73ad
[CI] Pypi deploy workflow update (#1786) 2024-12-27 14:08:37 +08:00
Linchen Xiao
f103e90764
[CI] Update deploy python version (#1784) 2024-12-27 13:35:36 +08:00
zhulinJulia24
ebeb578fbf
[ci] remove daily step retry and update pr score (#1782)
[ci] remove daily step retry
2024-12-26 16:51:26 +08:00
Linchen Xiao
56eaac6d8f
[Update] Volc status exception handle (#1780)
* update

* update
2024-12-26 15:43:24 +08:00
zhulinJulia24
c48bbde26f
[ci] remove testcase into volc engine (#1777)
* update

* update

* update

* update

* update

* update

* updaste

* update

* update

* update

* update

* update

* update

* update

* updaste

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update daily-run-test.yml

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update
2024-12-25 17:26:50 +08:00
Linchen Xiao
ebefffed61
[Update] Update OC academic 202412 (#1771)
* [Update] Update academic settings

* Update

* update
2024-12-19 18:07:34 +08:00
Chang Lan
d70100cdf2
[Update] Customizable tokenizer for RULER (#1731)
* Customizable tokenizer for RULER

* Relax requirements
2024-12-19 18:02:11 +08:00
Junnan Liu
499302857f
[Fix] Fix Local Runner Params Save Path (#1768)
* update local runner params save dir

* fix remove

* fix directory remove

* Fix *_params.py by uuid4
2024-12-19 16:07:34 +08:00
Mashiro
9a5adbde6a
[Fix] Fix lark reporter issue (#1769) 2024-12-18 19:33:06 +08:00
zhulinJulia24
111f817e04
[ci] add fullbench testcase (#1766)
add volc testcase
2024-12-18 13:24:28 +08:00
bittersweet1999
38dba9919b
[Fix] Fix Subjective summarizer order error (#1767)
* fix pip version

* fix pip version

* fix order error
2024-12-18 13:21:31 +08:00
Linchen Xiao
d593bfeac8
[Bump] Bump version to 0.3.8 (#1765)
* [Bump] Bump version to 0.3.8

* Update README.md
2024-12-17 19:17:18 +08:00
Linchen Xiao
eadbdcb4cb
[Update] Update requirement and deepseek configurations (#1764) 2024-12-17 10:16:47 +08:00
liushz
5c8e91f329
[Fix] Fix vllm max_seq_len parameter transfer (#1745)
* [Fix] Fix vllm max_seq_len parameter transfer

* [Fix] Fix vllm max_seq_len parameter transfer

* Update pr-run-test.yml

* Update pr-run-test.yml

---------

Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com>
2024-12-16 21:44:36 +08:00
Alexander Lam
1bd594fc62
[Feature] Added CompassArena-SubjectiveBench with Bradley-Terry Model (#1751)
* fix lint issues

* updated gitignore

* changed infer_order from random to double for the pairwise_judge.py (not changing for pairwise_bt_judge.py

* added return statement to CompassArenaBradleyTerrySummarizer to return overall score for each judger model
2024-12-16 13:41:28 +08:00
zhulinJulia24
aeded4c4db
add new dataset summerizer (#1758)
add new dataset summerizer
2024-12-13 09:50:43 +08:00
zhulinJulia24
a1c00cc8b7
[ci] add common_summarizer return (#1724)
* Update common_summarizer.py

* Update common_summarizer.py
2024-12-11 20:38:32 +08:00
liushz
c4ce0174fe
[Fix] Fix ChineseSimpleQA max_out_len (#1757)
* add chinese simpleqa config

* add chinese simpleqa config

* add chinese simpleqa config

* add chinese simpleqa config

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* pdate Csimpleqa

* pdate Csimpleqa

* Update Csimpleqa

---------

Co-authored-by: 明念 <heyancheng.hyc@taobao.com>
2024-12-11 19:51:27 +08:00
Linchen Xiao
bd7b705be4
[Update] Update dataset configuration with no max_out_len (#1754) 2024-12-11 18:20:29 +08:00
OpenStellarTeam
1a5b3fc11e
Add Chinese SimpleQA config (#1697)
* add chinese simpleqa config

* add chinese simpleqa config

* add chinese simpleqa config

* add chinese simpleqa config

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* Update CsimpleQA

* pdate Csimpleqa

---------

Co-authored-by: 明念 <heyancheng.hyc@taobao.com>
Co-authored-by: liushz <qq1791167085@163.com>
2024-12-11 18:03:39 +08:00
Linchen Xiao
0d26b348e4
[Feature] Add OC academic 2412 (#1750) 2024-12-10 21:53:06 +08:00
bittersweet1999
54c0fb7a93
[Change] Change Compassarena metric (#1749)
* fix pip version

* fix pip version

* fix summarizer bug

* fix compassarena

* fix compassarena

* fix compassarena
2024-12-10 14:45:32 +08:00
Songyang Zhang
0d8df541bc
[Update] Update O1-style Benchmark and Prompts (#1742)
* Update JuderBench

* Support O1-style Prompts

* Update Code

* Update OpenAI

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update

* Update

* Update

* Update
2024-12-09 13:48:56 +08:00
Junnan Liu
f333be177c
[Update] Add MATH500 & AIME2024 to LiveMathBench (#1741)
* upload dataset definitions & configs

* add single dataset split specific metrics

* add k-pass@threshold & MATH500

* update std computation & k-pass computation

* add AIME224

* update README
2024-12-06 14:36:49 +08:00
bittersweet1999
08d63b5bf3
[Fix] Fix error in subjective default summarizer (#1740)
* fix pip version

* fix pip version

* fix summarizer bug
2024-12-06 11:03:53 +08:00
Songyang Zhang
fb43dd1906
[Update] Update Skywork/Qwen-QwQ (#1728)
* Update JuderBench

* Support O1-style Prompts

* Update Code

* Update OpenAI

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update
2024-12-05 19:30:43 +08:00
Junnan Liu
6181ac1122
[Update] Update LiveMathBench Evaluation to Support Single Dataset Split Metric Computation (#1730)
* upload dataset definitions & configs

* add single dataset split specific metrics

* add k-pass@threshold & MATH500
2024-12-05 16:54:16 +08:00
Linchen Xiao
4f317d1bd5
[Update] Update Manifest (#1738) 2024-12-05 13:59:56 +08:00
Linchen Xiao
ac23f0ce1f
[Update] Update init file for Korbench (#1737) 2024-12-05 11:26:00 +08:00
Yufeng Zhao
4d773904d4
[Update] Korbench readme supplementation (#1734)
* renewed

* readme

---------

Co-authored-by: yufeng zhao <zhaoyufeng@pjlab.org.cn>
2024-12-05 11:24:35 +08:00
Linchen Xiao
a011be6798
[Feature] DLC runner Lark report (#1735)
* [Bump] Bump version to 0.3.7

* DLC lark report update
2024-12-04 18:03:12 +08:00
Linchen Xiao
e2a290fd46
[Bump] Bump version to 0.3.7 (#1733) 2024-12-03 19:34:57 +08:00
Yufeng Zhao
98c4666d65
[Update] Update Korbench dataset abbr (#1729)
Co-authored-by: yufeng zhao <zhaoyufeng@pjlab.org.cn>
2024-12-02 16:20:58 +08:00
Linchen Xiao
9de27b4d85
[Update] Update max_out_len for datasets (#1726)
* [Update] Update max_out_len for datasets

* Update eval_regression_chat_objective_fullbench.py

* Update eval_regression_chat.py

* Update eval_regression_chat.py

* Update oc_score_baseline_fullbench.yaml

---------

Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com>
2024-12-02 11:42:07 +08:00
Junnan Liu
fe6d76fb13
[Feature] Support LiveMathBench (#1727) 2024-11-30 00:07:19 +08:00
liushz
b063779034
[Fix] Update P-MMEVAL OSS data (#1722)
* Update with PMMEval

* Update

* Update __init__.py

* Fix Bugs

* Delete .pre-commit-config.yaml

* Pull merge

* Fix pmmeval_gen config

* Update P-MMEVAL data

---------

Co-authored-by: wanyu <wanyu2018umac@gmail.com>
Co-authored-by: wanyu2018umac <42405907+wanyu2018umac@users.noreply.github.com>
2024-11-28 20:55:46 +08:00
liushz
c437135fad
[Feature] Add Openai Simpleqa dataset (#1720)
* Add Openai SimpleQA dataset

* Add Openai SimpleQA dataset

* Add Openai SimpleQA dataset

* Update eval_simpleqa.py

---------

Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2024-11-28 19:16:07 +08:00
liushz
06ab27861e
[Fix] Fix pmmeval_gen config (#1719)
* Update with PMMEval

* Update

* Update __init__.py

* Fix Bugs

* Delete .pre-commit-config.yaml

* Pull merge

* Fix pmmeval_gen config

---------

Co-authored-by: wanyu <wanyu2018umac@gmail.com>
Co-authored-by: wanyu2018umac <42405907+wanyu2018umac@users.noreply.github.com>
2024-11-28 11:53:36 +08:00
wanyu2018umac
90efcf2216
[Feature] Add P-MMEval (#1714)
* Update with PMMEval

* Update

* Update __init__.py

* Fix Bugs

* Delete .pre-commit-config.yaml

* Pull merge

---------

Co-authored-by: liushz <qq1791167085@163.com>
2024-11-27 21:26:18 +08:00
Junnan Liu
f7dbe6bb7d
[Feature] Add Arc Prize Public Evaluation (#1690)
* support arc prize

* update arc-prize dataset info & update arc-prize evaluation performance
2024-11-27 15:44:41 +08:00
Yi Ding
bcb707dbfc
[Fix] Fix BailingAPI model (#1707)
* [fix] sequence under the multiple samples

* resolve the lint problems

* change the parameter name

* add another error code for retry

* output the log for invalid response

* format correction

* update

* update

* update

* update

* add two model python files

* update the default parameter

* use random for delay

* update the api example of bailing

* remove the unnecessary parameter
2024-11-26 19:24:47 +08:00
Linchen Xiao
ef695e28e5
[Bug] Fix Korbench dataset module (#1717) 2024-11-26 17:13:28 +08:00
Songyang Zhang
f97c4eae42
[Update] Update Fullbench (#1712)
* Update JuderBench

* Support O1-style Prompts

* Update Code
2024-11-26 14:26:55 +08:00
Yufeng Zhao
300adc31e8
[Feature] Add Korbench dataset (#1713)
* first version for korbench

* first stage for korbench

* korbench_1

* korbench_1

* korbench_1

* korbench_1

* korbench_1_revised

* korbench_combined_1

* korbench_combined_1

* kor_combined

* kor_combined

* update

---------

Co-authored-by: MaiziXiao <xxllcc1993@gmail.com>
2024-11-25 20:11:27 +08:00
Chang Lan
5c1916ea4c
[Update] Add RULER 64k config (#1709) 2024-11-25 19:35:27 +08:00
liushz
e49fcfd3a3
[Update] Update MATH dataset with model judge (#1711)
* Update math with llm judge

* Update math with llm judge

* Update math with llm judge

* Update math with llm judge

* Update math with llm judge
2024-11-25 15:14:55 +08:00
Linchen Xiao
80e3b9ef37
[Update] Add math prm 800k (#1708) 2024-11-21 21:29:43 +08:00
Linchen Xiao
500fb1032a
[Update] Update configurations (#1704) 2024-11-21 16:51:18 +08:00
zhulinJulia24
ed81f9df30
[CI] update torch version and add more datasets into daily testcase (#1701)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-11-21 10:37:33 +08:00
Yi Ding
05044dfaf2
[Update] Support new error code for Bailing model (#1702)
* support new error code

* fix the lint problems
2024-11-20 16:40:22 +08:00
Linchen Xiao
ff831b153e
[BUMP] Bump version to 0.3.6 (#1694) 2024-11-18 20:24:50 +08:00
Linchen Xiao
ab8fdbbaab
[Update] Update Math auto-download data (#1700) 2024-11-18 20:24:35 +08:00
Linchen Xiao
98242ff1d1
[Update] first_option_postprocess (#1699)
* update first_option_postprocess

* update
2024-11-18 20:14:29 +08:00
Linchen Xiao
4653f6976e
[Update] update volc CPU flavor (#1698) 2024-11-18 12:33:51 +08:00
zhulinJulia24
4a20e1176d
[CI] Update baselines (#1693)
Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-11-15 14:46:29 +08:00
Linchen Xiao
40a9f0be0d
[Update] MUSR dataset config prefix update (#1692) 2024-11-15 11:06:30 +08:00
abrohamLee
e9e4b69ddb
[Feature] MuSR Datset Evaluation (#1689)
* MuSR Datset Evaluation

* MuSR Datset Evaluation

Add an assertion and a Readme.md
2024-11-14 20:42:12 +08:00
Linchen Xiao
d415439f9b
[Fix] Fix bug for first_option_postprocess (#1688) 2024-11-14 16:45:59 +08:00
Linchen Xiao
e92a5d4230
[Feature] BABILong Dataset added (#1684)
* update

* update

* update

* update
2024-11-14 15:32:43 +08:00
Linchen Xiao
2fee63f537
[Update] Auto-download for followbench (#1685) 2024-11-13 15:47:29 +08:00
zhulinJulia24
f8a1c1f487
[CI] update (#1682)
Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-11-13 10:48:05 +08:00
bittersweet1999
aca8ec3c6a
[Hotfix] Hotfix (#1683)
* fix pip version

* fix pip version

* fix lint

* hotfix
2024-11-13 10:14:27 +08:00
zhulinJulia24
a9d6b6461f
[ci] react daily test (#1668)
* updaste

* update

* update

* update

* update

* update

* update

* update

* update

* update

* updaste

* update

* update

* refactor summarize

* update

* update

* update

* update

* update

* updaste

* update

* update

* update

* update

* updaste

* update

* update

* update

* update

* update

* updaste

* updaste

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update daily-run-test.yml

* Update daily-run-test.yml

* update

* update

* update

* update

* update

* Update daily-run-test.yml

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update daily-run-test.yml

* Update daily-run-test.yml

* update

* update

* Update daily-run-test.yml

* update

* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-11-12 18:40:27 +08:00
sobeit
3ec178f4a9
add single lora adapter support for vLLM inference. (#1679) 2024-11-12 17:31:36 +08:00
bittersweet1999
17b5e52f6c
[Hotfix] lmdeploy temp (#1674)
* fix pip version

* fix pip version

* hotfix
2024-11-12 16:10:16 +08:00
Linchen Xiao
a0ef2fd3b4
[Update] Dingo Dataset update (#1670)
* [Update] Dingo Dataset update

* update
2024-11-08 14:38:43 +08:00
Linchen Xiao
835bf75a36
[Feature] Add long context evaluation for base models (#1666)
* [Update] Add base long context evaluation

* update
2024-11-08 10:53:29 +08:00
Chang Cheng
fd7aa83c01
[Update] Update DLC Runner(#1662)
* push interntrain hard code

* push interntrain hard code

* remove redundant post process

---------

Co-authored-by: changcheng <changcheng@pjlab.org.cb>
Co-authored-by: changcheng <changcheng@pjlab.org.cn>
2024-11-07 15:45:35 +08:00
Linchen Xiao
db258eb7d5
[Bump] Bump version to v0.3.5 (#1657) 2024-11-03 21:23:35 +08:00
Lyu Han
888f1f3bef
[Fix] Update loglikehood compatibility (#1659) 2024-11-02 17:19:11 +08:00
liushz
f7d899823c
[Update] Update mmmlu_lite dataload (#1658)
* update mmmlu_lite dataload from oss

* update mmmlu_lite dataload from oss
2024-11-01 17:32:29 +08:00
Songyang Zhang
c789ce5698
[Fix] the automatically download for several datasets (#1652)
* [Fix] the automatically download for several datasets

* Update

* Update

* Update CI
2024-11-01 15:57:18 +08:00
Linchen Xiao
695738a89b
[Update] Add lmdeploy DeepSeek configs (#1656)
* [Update] Add lmdeploy DeepSeek configs

* update max out length
2024-11-01 15:34:23 +08:00
bittersweet1999
a0853c939d
[Add] Add CompassArenaSubjectiveBench (#1645)
* fix pip version

* fix pip version

* add compassarenasubjectivebench

* add compassarenasubjectivebench

* add compassarenabench
2024-11-01 13:52:22 +08:00
Songyang Zhang
d611907d14
[Doc] Update Doc (#1655) 2024-10-31 18:08:09 +08:00
Linchen Xiao
5212ffe8e2
[Update] Add new model configs (#1653) 2024-10-30 17:24:53 +08:00
Linchen Xiao
df57c08ccf
[Feature] Update Models, Summarizers (#1600) 2024-10-29 18:37:15 +08:00
Linchen Xiao
d91d66792a
[Update] Update Needlebench OSS path (#1651) 2024-10-29 18:05:44 +08:00
Chang Lan
46affab882
[Fix] Fix ruler_16k_gen (#1643) 2024-10-29 17:58:43 +08:00
Linchen Xiao
8172af49bb
[Update] Update wildbench max_seq_len (#1648)
* [Update] Wildbench max_seq_len update

* [Update] Wildbench max_seq_len update
2024-10-29 13:21:31 +08:00
Junnan Liu
645c5f3b2c
[Datasets] Add datasets CMO&AIME (#1610)
* add datasets cmo&aime

* delete unused modules

* modify prompt

* update __init__

* update data load and add README

* update data load

* update performance

* update md5

* remove indents

* add indent

* fix log for debug mode
2024-10-28 18:08:02 +08:00
Linchen Xiao
9c39cb68d4
[Bump] Bump version to 0.3.4 (#1639) 2024-10-25 20:10:16 +08:00
Linchen Xiao
a61e8a0803
[Update] Internal humaneval add (#1641)
* [Update] internal_humaneval_add

* update
2024-10-25 19:08:42 +08:00
Songyang Zhang
84be90669b
[Update] Fix issue of *_param.py, avoid name conflict;add keep_tmp_file flag to support keep the temp config file. (#1640) 2024-10-25 16:39:25 +08:00
BigDong
2542bc6907
[Feature] Support results saving as md format table (#1638) 2024-10-25 15:50:33 +08:00
Linchen Xiao
22fdea4bf2
[Update] Update DLC runner (#1637) 2024-10-24 21:36:16 +08:00
Lyu Han
fb12c3f98a
[Update] strip stop_words (#1635) 2024-10-24 20:39:20 +08:00
Linchen Xiao
662dddf41a
[Update] Add internal humaneval postprocess (#1636) 2024-10-24 17:45:21 +08:00
Linchen Xiao
be3c06a158
[Fix] Update common summarizer regex extraction (#1631) 2024-10-22 14:35:45 +08:00
Chang Lan
a927bba1cf
[Fix] Fix RULER datasets (#1628)
We need to ensure that we don't import anything that ends with "_datasets",
or they will be picked up by the runner, leading to duplicate / unwanted datasets
being evaluated.
2024-10-22 11:59:02 +08:00
Songyang Zhang
a4d5a6c81b
[Feature] Support LiveCodeBench (#1617)
* Update

* Update LCB

* Update

* Update

* Update

* Update

* Update
2024-10-21 20:50:39 +08:00
Chenguang Li
5868d5afa4
[Bug] Fix-NPU-Support (#1618)
* bugfix NPU support

* formatting

---------

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-10-21 17:42:53 +08:00
liushz
500b44ba2d
[Fix] gpqa_few_shot_ppl prompt bug (#1627) 2024-10-21 16:59:06 +08:00
Linchen Xiao
096c347e7d
[Fix] Qwen 2.5 model config (#1626)
* [Fix] Fix Qwen 2.5 model config

* [Fix] Fix Qwen 2.5 model config

* [Fix] Fix Qwen 2.5 model config
2024-10-21 16:58:18 +08:00
bittersweet1999
1188e1ecf0
[Update] eval_judgerbench.py (#1625) 2024-10-21 15:30:29 +08:00
zhulinJulia24
825d3388d5
[CI] Test PR staging fixed (#1624)
* Update oc_score_baseline.yaml

* Update runtime.txt
2024-10-21 11:02:37 +08:00
bittersweet1999
a11e2b2fd4
[Fix] Compatible with old versions (#1616)
* fix pip version

* fix pip version

* Compatible with old versions

* compati old version

* compati old version

* compati old version

* update configs
2024-10-21 10:16:29 +08:00
Lyu Han
6e8adf5221
[Bug] Remove prefix bos_token from messages when using lmdeploy as the accelerator (#1623)
* remove prefix bos_token from messages when using lmdeploy as the accelerator

* update
2024-10-19 20:03:47 +08:00
zhulinJulia24
b89c7b2fc3
[CI] Update daily-run-test.yml (#1620) 2024-10-18 18:30:35 +08:00
Bob Tsang
dd0b655bd0
[Feature] Support MMMLU & MMMLU-lite Benchmark (#1565)
* rm folder

* modify format according to reviewer

* modify format according to reviewer

* modify format according to reviewer

* add some files requirement

* fix some bug

* fix bug

* change load type

* Update MMMLU Dataset

* Update MMMLU Dataset

* Add MMMLU-Lite Dataset

* update MMMMLU datast

* update MMMMLU datast

* update MMMMLU datast

---------

Co-authored-by: BobTsang <BobTsang1995@gmail.com>
Co-authored-by: liushz <qq1791167085@163.com>
2024-10-17 19:09:34 +08:00
bittersweet1999
f0d436496e
[Update] update docs and add compassarena (#1614)
* fix pip version

* fix pip version

* update docs and add compassarena

* update docs
2024-10-17 14:39:06 +08:00
Haoran Que
4fe251729b
Upload HelloBench (#1607)
* upload hellobench

* update hellobench

* update readme.md

* update eval_hellobench.py

* update lastest

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-10-15 17:11:37 +08:00
bittersweet1999
fa54aa62f6
[Feature] Add Judgerbench and reorg subeval (#1593)
* fix pip version

* fix pip version

* update (#1522)

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>

* [Feature] Update Models (#1518)

* Update Models

* Update

* Update humanevalx

* Update

* Update

* [Feature] Dataset prompts update for ARC, BoolQ, Race (#1527)

add judgerbench and reorg sub

add judgerbench and reorg subeval

add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

---------

Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com>
Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2024-10-15 16:36:05 +08:00
x54-729
2b1afa7d1e
[Fix] fix interntrain's tokenizer truncate (#1605)
Co-authored-by: x54-729 <xingshuhao.dispatch@pjlab.org.cn>
2024-10-15 16:03:57 +08:00
zhulinJulia24
8aba547e06
[ci] fix stable issue of daily test (#1602)
* update

* update

* update

* Update daily-run-test.yml

* update

* Update daily-run-test.yml

* update

* update

* update

* Update pr-run-test.yml

* Update pr-run-test.yml

* update

* update

* Update daily-run-test.yml

* update

* update

* update

* update

* Update daily-run-test.yml

* Update daily-run-test.yml

* updaste

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-10-15 10:14:49 +08:00
Linchen Xiao
f390697a5e
[Fix] Update dlc runner python env (#1604) 2024-10-14 15:50:21 +08:00
Lyu Han
4fde41036f
[Feature] Update TurboMindModel by integrating lmdeploy pipeline API (#1556)
* integrate lmdeploy's pipeline api

* fix linting

* update user guide

* rename

* update

* update

* update

* rollback class name

* update

* remove unused code

* update

* update

* use pipeline

* fix ci check

* compatibility

* compatibility

* remove concurrency

* update

* fix table content

* update
2024-10-14 15:33:40 +08:00
liushz
5faee929db
[Feature] Add GaoKaoMath Dataset for Evaluation & MATH Model Eval Config (#1589)
* Add GaoKaoMath Dataset

* Add MATH LLM Eval

* Update GAOKAO Math Eval Dataset

* Update GAOKAO Math Eval Dataset
2024-10-12 19:13:06 +08:00
Linchen Xiao
69997f11f8
[Feature] Update requirements.txt (#1601)
* update crb

* update crbbench

* update crbbench

* update crbbench

* minor update wildbench

* [Fix] Update doc of wildbench, and merge wildbench into subjective

* [Fix] Update doc of wildbench, and merge wildbench into subjective, fix crbbench

* Update crb.md

* Update crb_pair_judge.py

* Update crb_single_judge.py

* Update subjective_evaluation.md

* Update openai_api.py

* [Update] update wildbench readme

* [Update] update wildbench readme

* [Update] update wildbench readme, remove crb

* Delete configs/eval_subjective_wildbench_pair.py

* Delete configs/eval_subjective_wildbench_single.py

* Update __init__.py

* [Fix] fix version mismatch for CIBench

* [Fix] fix version mismatch for CIBench, local runer

* [Fix] fix version mismatch for CIBench, local runer, remove oracle mode

* BUG: Update cibench.py

* BUG: Update cibench.py

* [Bug] Update agent.txt

* update agent

* Update agent.txt

* update readme

* update

---------

Co-authored-by: kleinzcy <zhangchy2@shanghaitech.edu.cn>
Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-10-12 18:26:57 +08:00
bittersweet1999
3f7a3730d7
[Fix] fix Flames (#1599)
* fix pip version

* fix pip version

* fix flames

* fix flames
2024-10-12 14:34:59 +08:00
Lyu Han
b52ba65c26
[Feature] Integrate lmdeploy pipeline api (#1198)
* integrate lmdeploy's pipeline api

* fix linting

* update user guide

* rename

* update

* update

* update

* rollback class name

* update

* remove unused code

* update

* update

* fix ci check

* compatibility

* remove concurrency

* Update configs/models/hf_internlm/lmdeploy_internlm2_chat_7b.py

* Update docs/zh_cn/advanced_guides/evaluation_lmdeploy.md

* [Bug] fix lint

---------

Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-10-09 22:58:06 +08:00
Songyang Zhang
d2ab51abbd
[Bug] Fix pre-commit hook (#1592) 2024-10-09 17:09:48 +08:00
x54-729
4d6349dfe1
[FIX] fix interntrain get_loglikelihood (#1584) 2024-10-08 11:34:04 +08:00
zhulinJulia24
89abcba486
[CI] Fix testcase failure (#1582)
* update

* Update oc_score_baseline.yaml

* Update daily-run-test.yml

* Update daily-run-test.yml

* Update daily-run-test.yml

* Update daily-run-test.yml

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-10-02 12:30:38 +08:00
Linchen Xiao
22a4e76511
[BUMP] Bump version to 0.3.3 (#1581) 2024-09-30 16:57:41 +08:00
x54-729
bbdca5eb4c
[BUG] Fix eos token handling and add comments for InternTrain (#1569)
Co-authored-by: x54-729 <xingshuhao.dispatch@pjlab.org.cn>
2024-09-30 15:46:06 +08:00
Linchen Xiao
763d7755b6
[BUG]GaokaoBench dataset fix (#1583) 2024-09-30 15:13:26 +08:00
shijinpjlab
7528b8ab8a
[Feature] Add dingo test (#1529)
* add qa dingo

* update

* change name qa to dingo

* eval model: llm_base

* update path

* change name and move path

* add eval_dingo

* update import

* add for pip

* add dingo package

* change import place

* update import place

* fix lint fail

* isort

* double quoted

---------

Co-authored-by: sj <shijin@pjlab.org.cn>
2024-09-29 19:24:58 +08:00
Yi Ding
85a28874aa
[BUG]: Fix Bailing API configs (#1570) 2024-09-27 11:56:57 +08:00
Songyang Zhang
e8437db98f
[Feature] Update BailingLM/OpenAI verbose (#1568)
* [Feature] 1. Update CoreBench Base\n 2. Fix lint issue in BalingAPI

* Update

* [Feature] Update API

* Update
2024-09-27 11:15:25 +08:00
Songyang Zhang
7d50294117
[Feature] Update Bailing (#1567)
* [Feature] 1. Update CoreBench Base\n 2. Fix lint issue in BalingAPI

* Update

* Update

* Update
2024-09-26 18:56:17 +08:00
Songyang Zhang
a7bacfdf7e
[Feature] Update CoreBench 2.0 (#1566)
* [Feature] 1. Update CoreBench Base\n 2. Fix lint issue in BalingAPI

* Update

* Update
2024-09-26 18:44:00 +08:00
Yi Ding
3f833186dc
[Feature] Support the reasoning from BaiLing LLM (#1541)
* [Feature] Support the reasoning from BaiLing LLM

This commit includes the access to BaiLing LLM and gets the reasoning.

* Add the api example

The example of evalute bailing api

* Revise the generation arguments

Based on current experiment, we update some generation arguments for better reasoning

* [fix] set the batch size

* Retry under flowcontrol of serverside

* add dependent package into requirement.txt

add dependent package retrying to clean up the pre-comment check.

* correct the file names and make the file copy

correct the file names.
copy the files under configs to opencompass

* fix the lint issue

---------

Co-authored-by: christopher.dy <christopher.dy@antgroup.com>
2024-09-26 16:49:52 +08:00
Linchen Xiao
80cda1980e
[BUG] fix followbench dataset config (#1564)
* [BUG] fix followbench dataset config

* [BUG] fix followbench dataset config
2024-09-25 20:58:34 +08:00
zhulinJulia24
aa43eaf267
[CI] add more models into testcase and test env of cu12 (#1558)
* update

* update

* Update pr-run-test.yml

* update

* update

* update

* update

* Update daily-run-test.yml

* update

* updaste

* update

* update

* update

* Update daily-run-test.yml

* update

* update

* Update daily-run-test.yml

* Update daily-run-test.yml

* update

* update

* update

* update

* update

* Update daily-run-test.yml

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-09-25 17:07:27 +08:00
zhulinJulia24
87df8a73a3
[CI] add a common summarizer for qabench summarizer (#1545)
* update

* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-09-25 13:40:47 +08:00
Linchen Xiao
c3fb9065db
[Feature] Add dlc sleep time (#1562) 2024-09-25 11:53:48 +08:00
Songyang Zhang
fe84bbd9a0
[Feature] Add Config for CoreBench (#1547)
* [Feature] Add Config for CoreBench

* Update
2024-09-25 11:36:43 +08:00
Chuanyang Jin
17eefc0e1e
[Fix] Correct typos (#1561) 2024-09-25 11:27:17 +08:00
liushz
83eeb52b09
[Feature] Update WikiBench base model config (#1553)
* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update GPQA & MMLU_Pro

* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update MathBench & Math base config

* Update WikiBench base model config

---------

Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-09-25 11:26:36 +08:00
Songyang Zhang
e7681943f3
[Feature] Update the max_out_len for many models (#1559) 2024-09-24 21:52:28 +08:00
bittersweet1999
a2e9bc0c41
[Fix] fix duplicate error in partitioner (#1552)
* fix pip version

* fix pip version

* fix duplicate error in paritioner

* fix duplicate error in paritioner
2024-09-23 19:45:21 +08:00
x54-729
335667183a
[Feature] Add Interntrain model support (#1548)
Co-authored-by: x54-729 <xingshuhao.dispatch@pjlab.org.cn>
2024-09-23 19:10:26 +08:00
klein
24915aeb3f
[BUG] Update CIbench config(#1544)
* BUG: Update cibench.py

* BUG: Update cibench.py
2024-09-23 18:32:27 +08:00
liushz
a0cfd61129
[Feature] Update MathBench & Math base model config (#1550)
* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update GPQA & MMLU_Pro

* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update MathBench & Math base config

---------

Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-09-23 14:03:59 +08:00
Songyang Zhang
ee058e25b2
[Feature] Support verbose for OpenAI API (#1546) 2024-09-20 17:12:52 +08:00
hailsham
a81bbb85bf
[FIX] Added handling for the "begin section" in meta_template to APITemplateParser (#1405)
Co-authored-by: leifei <nuuooo@icloud.com>
2024-09-19 18:12:04 +08:00
Songyang Zhang
5a27c2bd6f
[Model] Support Qwen2.5 Instruct (#1543) 2024-09-19 16:16:07 +08:00
Songyang Zhang
be460fbb21
[Feature] Support OpenAI O1 models (#1539)
* [Feature] Support OpenAI O1 models

* Update README.md

---------

Co-authored-by: liushz <qq1791167085@163.com>
2024-09-18 22:41:17 +08:00
liushz
2e9db77d57
[Feature] Add custom model postprocess function (#1519)
Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-09-18 14:40:51 +08:00
liushz
c9a7026f59
[Feature] Update MathBench & WikiBench for FullBench (#1521)
* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update GPQA & MMLU_Pro

* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

* Update MathBench & WikiBench for FullBench

---------

Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-09-18 14:35:30 +08:00
Songyang Zhang
cfbd308edf
[Doc] Update README (#1528)
* '

* Update
2024-09-14 16:02:17 +08:00
Linchen Xiao
90279b6461
[Feature] Dataset prompts update for ARC, BoolQ, Race (#1527) 2024-09-13 10:30:43 +08:00
Songyang Zhang
6997990c93
[Feature] Update Models (#1518)
* Update Models

* Update

* Update humanevalx

* Update

* Update
2024-09-12 23:35:30 +08:00
zhulinJulia24
3754dc1b67
update (#1522)
Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-09-12 15:00:52 +08:00
bittersweet1999
7c7fa36235
[Feature] add support for internal Followbench (#1511)
* fix pip version

* fix pip version

* add internal followbench

* add internal followbench

* fix lint

* fix lint
2024-09-11 13:32:34 +08:00
Linchen Xiao
317763381c
update (#1517) 2024-09-11 13:31:20 +08:00
bittersweet1999
c2bcd8725e
[Fix] Fix wildbench (#1508)
* fix pip version

* fix pip version

* fix_wildbench
2024-09-10 17:35:07 +08:00
Alexander Lam
a31a77c5c1
[Feature] Add SciCode summarizer config (#1514)
* [Feature] added SciCode  summarizer config and dataset config for with background evaluation

* fix lint issues

* removed unnecessary type in summarizer group
2024-09-10 16:06:02 +08:00
Mo Li
5b93592242
[Fix] Fix link-check workflow by adjusting line breaks in URL ignore patterns (#1507)
* update link-check

* update link-check

* update link-check
2024-09-10 10:20:40 +08:00
Linchen Xiao
b5f8afb57b
[Bump] Bump version to 0.3.2.post1 2024-09-06 19:09:30 +08:00
Linchen Xiao
f04f3546bc
[Fix] Import fix (#1500) 2024-09-06 18:29:24 +08:00
Linchen Xiao
ff18545f0e
[Bump] Bump version to 0.3.2 (#1497) 2024-09-06 16:10:45 +08:00
Linchen Xiao
87ffa71d68
[Feature] Longbench dataset update 2024-09-06 15:50:12 +08:00
Albert Yan
928d0cfc3a
[Feature] Add support for Rendu API (#1468)
* Add support for Rendu API

* fix lint issue

* fix lint issue

* fix lint issue

* Update

---------

Co-authored-by: 13190 <zeyu.yan@transn.com>
Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-09-06 01:00:43 +08:00
Hari Seldon
faf5260155
[Feature] Optimize Evaluation Speed of SciCode (#1489)
* update scicode

* update comments

* remove redundant variable

* Update

---------

Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-09-06 00:59:41 +08:00
liushz
00fc8da5be
[Feature] Add model postprocess function (#1484)
* Add model postprocess function

* Add model postprocess function

* Add model postprocess function

* Add model postprocess function

* Add model postprocess function

* Add model postprocess function

* Add model postprocess function

* Add model postprocess function

---------

Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-09-05 21:10:29 +08:00
Maxime SHE
45efdc994d
[Feature] Add an attribute api_key into TurboMindAPIModel default None (#1475)
Co-authored-by: Maxime <maximeshe@163.com>
Add an attribute api_key into TurboMindAPIModel default None then we can set the api_key while using lmdeploy to deploy the llm model
2024-09-05 17:51:16 +08:00
Linchen Xiao
6c9cd9a260
[Feature] Needlebench auto-download update (#1480)
* update

* update

* update
2024-09-05 17:22:42 +08:00
zhulinJulia24
716d46e1f5
[ci] fix badcase and add env info (#1491)
* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-09-05 16:43:45 +08:00
zhulinJulia24
fb6a0df652
[ci] fix test env for vllm and add vllm baselines (#1481)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-09-04 19:24:09 +08:00
Linchen Xiao
da74cbfa39
[Fix] Model configs update 2024-09-04 18:57:10 +08:00
Linchen Xiao
95aad6c282
[Fix] Requirements update 2024-09-03 18:50:40 +08:00
Linchen Xiao
9693be46b7
[Feature] Mmlu-pro auto-download (#1464)
* update

* update

* update

* update

* update
2024-08-30 10:03:40 +08:00
zhulinJulia24
f34209766d
[ci] fix test env (#1470)
* Update daily-run-test.yml

* Update daily-run-test.yml

* Update pr-run-test.yml

* Update daily-run-test.yml

* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-08-29 14:48:17 +08:00
Alexander Lam
8b39225259
[Feature] Added extra_body support for OpenAISDK; Added support for proxy URL when connecting to OpenAI's API. (#1467)
* fix lint issues

* fix lint issues
2024-08-29 00:43:43 +08:00
Guoli Yin
a488b9b4f5
[Feature] Make OPENAI_API_BASE compatible with openai default env (#1461)
* Make OPENAI_API_BASE compatible with openai default env

* Make OPENAI_API_BASE compatible with openai default env

---------

Co-authored-by: Guoli Yin <gyin@icloud.com>
2024-08-28 23:14:41 +08:00
Songyang Zhang
e5a8eb2283
[Feature] Update Lint and Leaderboard (#1458)
* [Feature] Update Lint and Leaderboard

* Update

* Update
2024-08-28 22:36:42 +08:00
Linchen Xiao
245664f4c0
[Feature] Fullbench v0.1 language update (#1463)
* update

* update

* update

* update
2024-08-28 14:01:05 +08:00
CHEN PENGAN
463231c651
[Feature] Add icl_sliding_k_retriever.py and update __init__.py (#1305)
* Add icl_sliding_k_retriever.py and update __init__.py

* Fix flake8, isort, and yapf issues for Sliding Window Retriever
2024-08-23 17:18:31 +08:00
Linchen Xiao
94b6bd65fc
[Fix] Fix cli evaluation for multiple models (#1454)
* update

* update
2024-08-23 17:15:36 +08:00
Linchen Xiao
2295a33a18
[Doc] Update readme (#1453) 2024-08-23 14:11:01 +08:00
Songyang Zhang
5485207fbe
[Bump] Bump version to 0.3.1 (#1450)
* [Bump] Bump version 0.3.1

* Update
2024-08-23 10:47:57 +08:00
Songyang Zhang
7c2d25b557
[Fix] Update SciCode and Gemma model (#1449)
* [Fix] Update SciCode and Gemma model

* Update

* Update
2024-08-23 10:42:27 +08:00
Xu Song
ad3931aa32
Update openicl_infer.py (#1308) 2024-08-23 10:39:22 +08:00
zhulinJulia24
fb69ba5eb8
[CI] add commond testcase into daily testcase (#1447)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-08-23 01:49:17 +08:00
liushz
9fdbc744dc
[Fix] Update option postprocess & mathbench language summarizer (#1413)
* Update option postprocess & mathbench language summarizer

* Update option postprocess & mathbench language summarizer

---------

Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
2024-08-22 14:49:07 +08:00
Linchen Xiao
0fe9756c5d
[Doc] Update Readme (#1439)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update
2024-08-22 14:48:45 +08:00
Hari Seldon
14b4b735cb
[Feature] Add support for SciCode (#1417)
* add SciCode

* add SciCode

* add SciCode

* add SciCode

* add SciCode

* add SciCode

* add SciCode

* add SciCode w/ bg

* add scicode

* Update README.md

* Update README.md

* Delete configs/eval_SciCode.py

* rename

* 1

* rename

* Update README.md

* Update scicode.py

* Update scicode.py

* fix some bugs

* Update

* Update

---------

Co-authored-by: root <HariSeldon0>
Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-08-22 13:42:25 +08:00
liushz
d3963bceae
[Bug] Add model support for 'huggingface_above_v4_33' when using '-a' (#1430)
Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
2024-08-22 13:40:24 +08:00
seetimee
ac093fce53
[Update] Update openai_api.py (#1438)
Most models' token limits are above 32k. It will fix long context dataset test bug of skiping some data.
2024-08-21 18:57:49 +08:00
liushz
e076dc5acf
[Fix] Fix openai api tiktoken bug for api server (#1433)
* Fix openai api tiktoken

* Fix openai api tiktoken

---------

Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-08-20 22:02:14 +08:00
Linchen Xiao
a4b54048ae
[Feature] Add Ruler datasets (#1310)
* [Feature] Add Ruler datasets

* pre-commit fixed

* Add model specific tokenizer to dataset

* pre-commit modified

* remove unused import

* fix linting

* add trust_remote to tokenizer load

* lint fix

* comments resolved

* fix lint

* Add readme

* Fix lint

* ruler refactorize

* fix lint

* lint fix

* updated

* lint fix

* fix wonderwords import issue

* prompt modified

* update

* readme updated

* update

* ruler dataset added

* Update

---------

Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-08-20 11:40:11 +08:00
Xu Song
99b5122ed5
[Feature] Add abbr for rolebench dataset (#1431)
* Add abbr for rolebench dataset

* add
2024-08-20 11:22:48 +08:00
Linchen Xiao
ecf9bb3e4c
[Bug] Commonsenseqa dataset fix (#1425)
* longbench dataset load fix

* update

* Update

* Update

* Update

* update

* update

---------

Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-08-16 15:54:07 +08:00
Songyang Zhang
9b3613f10b
[Update] Support auto-download of FOFO/MT-Bench-101 (#1423)
* [Update] Support auto-download of FOFO/MT-Bench-101

* Update wildbench
2024-08-16 11:57:41 +08:00
bittersweet1999
ce7f4853ce
[Fix] Sub summarizer order fix (#1426)
* fix pip version

* fix pip version

* fix sub summarizer order

* fix order
2024-08-15 21:08:18 +08:00
Linchen Xiao
2596f226f4
[Fix] longbench dataset load fix (#1422) 2024-08-15 11:30:30 +08:00
Linchen Xiao
8e55c9c6ee
[Update] Compassbench v1.3 (#1396)
* stash files

* compassbench subjective evaluation added

* evaluation update

* fix lint

* update docs

* Update lint

* changes saved

* changes saved

* CompassBench subjective summarizer added (#1349)

* subjective summarizer added

* fix lint

[Fix] Fix MathBench (#1351)

Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>

[Update] Update model support list (#1353)

* fix pip version

* fix pip version

* update model support

subjective summarizer updated

knowledge, math objective done (data need update)

remove secrets

objective changes saved

knowledge data added

* secrets removed

* changed added

* summarizer modified

* summarizer modified

* compassbench coding added

* fix lint

* objective summarizer updated

* compass_bench_v1.3 updated

* update files in config folder

* remove unused model

* lcbench modified

* removed model evaluation configs

* remove duplicated sdk implementation

---------

Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-08-12 19:09:19 +08:00
changyeyu
59586a8b4a
[Feature] Enable Truncation of Mid-Section for Long Prompts in huggingface_above_v4_33.py (#1373)
* Retain the first and last halves of the tokens from the prompt, discarding the middle, to avoid exceeding the model's maximum length.

* Add default parameter: mode

* Modified a comment.

* Modified variable names.

* fix yapf lint
2024-08-09 11:36:30 +08:00
Songyang Zhang
88eb91219b
[Doc] Update README (#1404)
* [Doc] Update README

* Update
2024-08-08 16:18:33 +08:00
yaoyingyy
decb621ff6
[Fix] the issue where scores are negative in the Lawbench dataset evaluation(#1402) (#1403) 2024-08-08 16:08:26 +08:00
Yunlin Mao
818d72a650
[Fix] modelscope dataset load problem (#1406)
* fix modelscope dataset load

* fix lint
2024-08-08 14:01:06 +08:00
Songyang Zhang
264fd23129
[Bump] Bump version for v0.3.0 (#1398) 2024-08-07 01:25:24 +08:00
Songyang Zhang
fed1a4998b
[Fix] Fix CaLM import (#1395) 2024-08-06 12:17:45 +08:00
Songyang Zhang
c81329b548
[Fix] Fix Slurm ENV (#1392)
1. Support Slurm Cluster
2. Support automatic data download
3. Update InternLM2.5-1.8B/20B-Chat
2024-08-06 01:35:20 +08:00
Songyang Zhang
c09fc79ba8
[Feature] Support OpenAI ChatCompletion (#1389)
* [Feature] Support import configs/models/summarizers from whl

* Update

* Update openai sdk

* Update

* Update gemma
2024-08-01 19:10:13 +08:00
Peng Bo
07c96ac659
Calm dataset (#1385)
* Add CALM Dataset
2024-08-01 10:03:21 +08:00
Songyang Zhang
46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00
Mo Li
b83396f57c
add 1m config (#1383) 2024-07-31 14:53:51 +08:00
klein
52eccc4f0e
[Fix] Fix version mismatch of CIBench (#1380)
* update crb

* update crbbench

* update crbbench

* update crbbench

* minor update wildbench

* [Fix] Update doc of wildbench, and merge wildbench into subjective

* [Fix] Update doc of wildbench, and merge wildbench into subjective, fix crbbench

* Update crb.md

* Update crb_pair_judge.py

* Update crb_single_judge.py

* Update subjective_evaluation.md

* Update openai_api.py

* [Update] update wildbench readme

* [Update] update wildbench readme

* [Update] update wildbench readme, remove crb

* Delete configs/eval_subjective_wildbench_pair.py

* Delete configs/eval_subjective_wildbench_single.py

* Update __init__.py

* [Fix] fix version mismatch for CIBench

* [Fix] fix version mismatch for CIBench, local runer

* [Fix] fix version mismatch for CIBench, local runer, remove oracle mode

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-07-30 17:51:24 +08:00
Songyang Zhang
33ceaa0eb8
[Bug] Fix bug in turbomind (#1377) 2024-07-30 09:37:50 +08:00
Songyang Zhang
eee5a5be23
[Fix] Update get_data_path for LCBench and HumanEval (#1375) 2024-07-29 19:28:09 +08:00
QXY
fea11b1d20
[Feature] add support for hf_pulse_7b (#1255)
* add support for hf_pulse_7b

* Update hf_pulse_7b.py
2024-07-29 19:01:52 +08:00
Songyang Zhang
704853e5e7
[Feature] Update pip install (#1324)
* [Feature] Update pip install

* Update Configuration

* Update

* Update

* Update

* Update Internal Config

* Update collect env
2024-07-29 18:32:50 +08:00
Xingjun.Wang
edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00
jxd
12b84aeb3b
[Feature] Update CHARM Memeorziation (#1230)
* update gemini api and add gemini models

* add openai models

* update CHARM evaluation

* add CHARM memorization tasks

* add CharmMemSummarizer (output eval details for memorization-independent reasoning analysis

* update CHARM readme

---------

Co-authored-by: wujiang <wujiang@pjlab.org.cn>
2024-07-26 18:42:30 +08:00
bittersweet1999
d3782c1d47
Revert "Calm dataset (#1287)" (#1366)
This reverts commit edd0ffdf70.
2024-07-26 18:27:29 +08:00
Xu Song
9b9855a008
Add en and zh groups to longbench summarizer; Fix longbench overall score (#1216)
* Add longbench groups

* update

* update
2024-07-26 11:50:41 +08:00
Peng Bo
edd0ffdf70
Calm dataset (#1287)
* add calm dataset

* modify config max_out_len

* update README

* Modify README

* update README

* update README

* update README

* update README

* update README

* add summarizer and modify readme

* delete summarizer config comment

* update summarizer

* modify same response to all questions

* update README
2024-07-26 11:48:16 +08:00
mqy004
a08931f214
[Fix] origin_prompt should be None in llm-compression task (#1225)
Co-authored-by: Qinyang Mou <qinyang_mou@intsig.net>
2024-07-26 11:46:02 +08:00
LeavittLang
8ee7fecb68
Adding support for Doubao API (#1218)
* Adding support for Doubao API

* Update doubao_api.py

Fixed the bug that the connection would be retried even if it was normal.

* Update doubao_api.py

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-07-26 11:44:51 +08:00
klein
65fad8e2ac
[Fix] minor update wildbench (#1335)
* update crb

* update crbbench

* update crbbench

* update crbbench

* minor update wildbench

* [Fix] Update doc of wildbench, and merge wildbench into subjective

* [Fix] Update doc of wildbench, and merge wildbench into subjective, fix crbbench

* Update crb.md

* Update crb_pair_judge.py

* Update crb_single_judge.py

* Update subjective_evaluation.md

* Update openai_api.py

* [Update] update wildbench readme

* [Update] update wildbench readme

* [Update] update wildbench readme, remove crb

* Delete configs/eval_subjective_wildbench_pair.py

* Delete configs/eval_subjective_wildbench_single.py

* Update __init__.py

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-07-26 11:19:04 +08:00
baymax591
51a94aee01
[Bug] fix bug: delete & (#1365)
Co-authored-by: 白超 <baichao19@huawei.com>
2024-07-26 11:03:55 +08:00
Mo Li
69aa2f2d57
[Feature] Make NeedleBench available on HF (#1364)
* update_lint

* update_huggingface format

* fix bug

* update docs
2024-07-25 19:01:56 +08:00
Fengzhe Zhou
c3c02c2960
update docs (#1318)
* update docs

* 高效评测 -> 数据分片

* update

* update

* Update faq.md

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-07-25 18:44:25 +08:00
heya5
73aa55af6d
[Fix] Support HF models deployed with an OpenAI-compatible API. (#1352)
* Support HF models deployed with an OpenAI-compatible API.

* resolve lint issue

* add extra_body arguments

There are many other arguments when using openi-compatiable API like this: https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#extra-parameters-for-chat-api

* fix linting issue

* fix yapf linting issue
2024-07-25 18:38:23 +08:00
WANG WENJIN
0aad8199c7
Fix the summary error in subjective.py (#1363) 2024-07-25 18:36:13 +08:00
bittersweet1999
8fe75e9937
[Update] update Subeval demo config (#1358)
* fix pip version

* fix pip version

* update demo config
2024-07-24 15:48:28 +08:00
bittersweet1999
86b6d18731
[Update] Update model support list (#1353)
* fix pip version

* fix pip version

* update model support
2024-07-23 13:35:58 +08:00
liushz
cf3e942f73
[Fix] Fix MathBench (#1351)
Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
2024-07-23 13:35:38 +08:00
Linchen Xiao
8127fc3518
CompassBench subjective summarizer added (#1349)
* subjective summarizer added

* fix lint
2024-07-23 12:29:57 +08:00
Que Haoran
a244453d9e
[Feature] Support inference ppl datasets (#1315)
* commit inference ppl datasets

* revised format

* revise

* revise

* revise

* revise

* revise

* revise
2024-07-22 17:59:30 +08:00
Xu Song
e9384823f2
Upgrade default math pred_postprocessor (#1340)
* Change default math postprocessor

* Update math_gen_265cce.py
2024-07-22 14:00:49 +08:00
Songyang Zhang
96f644de69
[Fix] Update path and folder (#1344)
* Update path and folder

* Update path

---------

Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-21 08:18:14 +08:00
Linchen Xiao
a56678190b
[Feature] CompassBench v1_3 subjective evaluation (#1341)
* stash files

* compassbench subjective evaluation added

* evaluation update

* remove unneeded content

* fix lint

* update docs

* Update lint

* Update

---------

Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-19 23:12:23 +08:00
liushz
98c58f8a6c
[Feature] Add compassbench knowledge&math part (#1342)
* Add Math Evaluation with Judge Model Evaluator

* Add Math Evaluation with Judge Model Evaluator

* Add Math Evaluation with Judge Model Evaluator

* Add Math Evaluation with Judge Model Evaluator

* Fix Llama-3 meta template

* Fix MATH with JudgeLM Evaluation

* Fix MATH with JudgeLM Evaluation

* Fix MATH with JudgeLM Evaluation

* Fix MATH with JudgeLM Evaluation

* Update acclerator

* Update MathBench

* Update accelerator

* Add Doc for accelerator

* Add Doc for accelerator

* Add Doc for accelerator

* Add Doc for accelerator

* Update compassbench august wiki&math

* Update compassbench august wiki&math

* Update compassbench august wiki&math

* Update compassbench_aug_gen_068af0.py

* Update compassbench_aug_gen_068af0.py

* Update

---------

Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-19 22:54:46 +08:00
bittersweet1999
1f9f728f22
[Feature] support compassbench Checklist evaluation (#1339)
* fix pip version

* fix pip version

* support checklist eval

* init

* add lan

* fix typo
2024-07-19 16:40:44 +08:00
Mo Li
f40add2596
[Fix] Fix lint (#1334)
* update needlebench docs

* update model_name_mapping dict

* update README

* fix_lint
2024-07-18 17:15:06 +08:00
Xu Song
1bfb4217ff
Fix typing and typo (#1331) 2024-07-18 13:41:24 +08:00
Mo Li
104bddf647
[Doc] Update NeedleBench Docs (#1330)
* update needlebench docs

* update model_name_mapping dict

* update README

* Update README_zh-CN.md

---------

Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
2024-07-18 13:16:19 +08:00
Xu Song
0a1c89e618
[Fix] Fix rouge evaluator of rolebench_zh (#1322) 2024-07-16 16:18:13 +08:00
bittersweet1999
3aeabbc427
[Fix] update Faq (#1313)
* fix pip version

* fix pip version

* update faq

* update faq

* update faq

---------

Co-authored-by: Leymore <zfz-960727@163.com>
2024-07-12 11:29:26 +08:00
bittersweet1999
8e7ad2e981
[Fix] add bc for alignbench summarizer (#1306)
* fix pip version

* fix pip version

* fix alignbench

* fix import error
2024-07-12 11:06:20 +08:00
Fengzhe Zhou
62f55987f1
force register (#1311) 2024-07-11 19:59:35 +08:00
bittersweet1999
889e7e1140
[Fix] Change abbr for arenahard dataset (#1302)
* fix pip version

* fix pip version

* change abbr for arenahard
2024-07-11 12:42:03 +08:00
Fengzhe Zhou
a62c613d3e
[Sync] bump version 0.2.6+local (#1294) 2024-07-06 00:44:06 +08:00
Fengzhe Zhou
1d3a26c732
[Doc] quick start swap tabs (#1263)
* [doc] quick start swap tabs

* update docs

* update

* update

* update

* update

* update

* update

* update
2024-07-05 23:51:42 +08:00
bittersweet1999
68ca48496b
[Refactor] Reorganize subjective eval (#1284)
* fix pip version

* fix pip version

* reorganize subjective eval

* reorg sub

* reorg subeval

* reorg subeval

* update subjective doc

* reorg subeval

* reorg subeval
2024-07-05 22:11:37 +08:00
Songyang Zhang
aadcfa625f
[Feat] Update owners for issues (#1293)
* [Feat] Update owners for issues

* update owners

---------

Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
Co-authored-by: Leymore <zfz-960727@163.com>
2024-07-05 18:27:30 +08:00
Songyang Zhang
409a042d93
[Feature] Add InternLM2.5 (#1286)
* [Feature] Add InternLM2.5

* Update

* update readme

---------

Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
Co-authored-by: Leymore <zfz-960727@163.com>
2024-07-04 20:10:31 +08:00
zhulinJulia24
167cfdcca3
[ci] update daily testcase (#1285)
* Update daily-run-test.yml

* Create eval_regression_chat.py

* Delete .github/scripts/.github/scripts/eval_regression_chat.py

* Create eval_regression_chat.py

* Update pr-run-test.yml

* Update daily-run-test.yml

* Update daily-run-test.yml

* Update daily-run-test.yml

* Update oc_score_baseline.yaml

* Update oc_score_assert.py

* Update daily-run-test.yml

* Update daily-run-test.yml

* Update oc_score_baseline.yaml

* Update oc_score_assert.py

* Update oc_score_assert.py

* fix lint

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update daily-run-test.yml

* update

---------

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
2024-07-03 18:56:09 +08:00
baymax591
28eba6fe34
npu适配 (#1250)
* npu适配

* Add suport for Ascend NPU

* format

---------

Co-authored-by: baymax591 <14428251+baymax591@user.noreply.gitee.com>
Co-authored-by: Leymore <zfz-960727@163.com>
2024-07-03 18:55:19 +08:00
liushz
fc2c9dea8c
Update MathBench summarizer & fix cot setting (#1282)
* Update MathBench

* Update MathBench

* Update MathBench

---------

Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-07-01 21:51:17 +08:00
Fengzhe Zhou
a32f21a356
[Sync] Sync with internal codes 2024.06.28 (#1279) 2024-06-28 14:16:34 +08:00
Xingyuan Bu
842fb1cd70
Update mtbench101.py (#1276)
fix wrong-used import
from torch.utils.data import DataLoader, Dataset
2024-06-26 00:40:22 +08:00
zhulinJulia24
26d077b080
flash attn installation in daily testcase (#1272)
* Update daily-run-test.yml

* Update daily-run-test.yml

* Update oc_score_baseline.yaml
2024-06-24 18:22:46 +08:00
liushz
e5ee1647fb
Add doc for accelerator function (#1252)
* Add Math Evaluation with Judge Model Evaluator

* Add Math Evaluation with Judge Model Evaluator

* Add Math Evaluation with Judge Model Evaluator

* Add Math Evaluation with Judge Model Evaluator

* Fix Llama-3 meta template

* Fix MATH with JudgeLM Evaluation

* Fix MATH with JudgeLM Evaluation

* Fix MATH with JudgeLM Evaluation

* Fix MATH with JudgeLM Evaluation

* Update acclerator

* Update MathBench

* Update accelerator

* Add Doc for accelerator

* Add Doc for accelerator

* Add Doc for accelerator

* Add Doc for accelerator

---------

Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
2024-06-24 14:53:51 +08:00
klein
1fa62c4a42
Support wildbench (#1266)
Co-authored-by: Leymore <zfz-960727@163.com>
2024-06-24 13:16:27 +08:00
LIU Xiao
83b9fd9eaa
add ",<2.0.0" to "numpy>=1.23.4" in requirements/runtime.txt, as pandas<2.0.0 doesn't compatible with numpy>=2.0.0 (#1267) 2024-06-24 11:03:42 +08:00
bittersweet1999
e0d7808b4e
[Fix] fix pip version (#1228)
* fix pip version

* fix pip version
2024-06-06 11:48:07 +08:00
bittersweet1999
982e024540
[Feature] add dataset Fofo (#1224)
* add fofo dataset

* add dataset fofo
2024-06-06 11:40:48 +08:00
Xingyuan Bu
02a0a4e857
MT-Bench-101 (#1215)
* add mt-bench-101

* add readme and requirements

* add mt-bench-101 data

* Update readme_mtbench101.md

* update readme

* update leaderboard

* fix typo

* Update readme_mtbench101.md

* fit newest opencompass

* update readme.md

* mtbench101 to opencompass

* mtbench101 to opencompass

* for code review

* for code review

* for code review

* hook

* hook

---------

Co-authored-by: liujie <ljie@buaa.edu.cn>
2024-06-03 14:52:12 +08:00
mqy004
b272803d8a
解决release版本安装后不能导入opencompass.cli.main的问题 (#1221)
* Create __init__.py

* Create __init__.py

* Create __init__.py

* Create __init__.py

* Create __init__.py

* Create __init__.py

* format

---------

Co-authored-by: Leymore <zfz-960727@163.com>
2024-05-31 13:23:33 +08:00
bittersweet1999
7c381e5be8
[Fix] fix summarizer (#1217)
* fix summarizer

* fix summarizer
2024-05-31 11:40:47 +08:00
2806 changed files with 95931 additions and 10979 deletions

42
.github/scripts/eval_regression_api.py vendored Normal file
View File

@ -0,0 +1,42 @@
from mmengine.config import read_base
from opencompass.models.openai_api import OpenAISDK
with read_base():
# choose a list of datasets
from opencompass.configs.datasets.gsm8k.gsm8k_gen import \
gsm8k_datasets # noqa: F401, E501
from opencompass.configs.datasets.race.race_gen import \
race_datasets # noqa: F401, E501
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
models = [
dict(
abbr='lmdeploy-api-test',
type=OpenAISDK,
key='EMPTY',
openai_api_base='http://localhost:23333/v1',
path='internlm3',
tokenizer_path='internlm/internlm3-8b-instruct',
rpm_verbose=True,
meta_template=api_meta_template,
query_per_second=128,
max_out_len=1024,
max_seq_len=4096,
temperature=0.01,
batch_size=128,
retry=20,
)
]
for d in datasets:
d['reader_cfg']['test_range'] = '[0:16]'

View File

@ -0,0 +1,210 @@
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.ARC_c.ARC_c_few_shot_ppl import \
ARC_c_datasets # noqa: F401, E501
from opencompass.configs.datasets.bbh.bbh_gen_98fba6 import \
bbh_datasets # noqa: F401, E501
from opencompass.configs.datasets.cmmlu.cmmlu_ppl_041cbf import \
cmmlu_datasets # noqa: F401, E501
from opencompass.configs.datasets.dingo.dingo_gen import \
datasets as dingo_datasets # noqa: F401, E501
from opencompass.configs.datasets.drop.drop_gen_a2697c import \
drop_datasets # noqa: F401, E501
from opencompass.configs.datasets.GaokaoBench.GaokaoBench_no_subjective_gen_d21e37 import \
GaokaoBench_datasets # noqa: F401, E501
from opencompass.configs.datasets.gpqa.gpqa_few_shot_ppl_4b5a83 import \
gpqa_datasets # noqa: F401, E501
# Corebench v1.7
from opencompass.configs.datasets.gsm8k.gsm8k_gen_17d0dc import \
gsm8k_datasets # noqa: F401, E501
from opencompass.configs.datasets.hellaswag.hellaswag_10shot_ppl_59c85e import \
hellaswag_datasets # noqa: F401, E501
from opencompass.configs.datasets.humaneval.internal_humaneval_gen_ce6b06 import \
humaneval_datasets as humaneval_v2_datasets # noqa: F401, E501
from opencompass.configs.datasets.humaneval.internal_humaneval_gen_d2537e import \
humaneval_datasets # noqa: F401, E501
from opencompass.configs.datasets.math.math_4shot_base_gen_43d5b6 import \
math_datasets # noqa: F401, E501
from opencompass.configs.datasets.MathBench.mathbench_2024_few_shot_mixed_4a3fd4 import \
mathbench_datasets # noqa: F401, E501
from opencompass.configs.datasets.mbpp.sanitized_mbpp_gen_742f0c import \
sanitized_mbpp_datasets # noqa: F401, E501
from opencompass.configs.datasets.mmlu.mmlu_ppl_ac766d import \
mmlu_datasets # noqa: F401, E501
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_few_shot_gen_bfaf90 import \
mmlu_pro_datasets # noqa: F401, E501
from opencompass.configs.datasets.nq.nq_open_1shot_gen_20a989 import \
nq_datasets # noqa: F401, E501
from opencompass.configs.datasets.race.race_few_shot_ppl import \
race_datasets # noqa: F401, E501
from opencompass.configs.datasets.SuperGLUE_BoolQ.SuperGLUE_BoolQ_few_shot_ppl import \
BoolQ_datasets # noqa: F401, E501
from opencompass.configs.datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import \
TheoremQA_datasets # noqa: F401, E501
from opencompass.configs.datasets.triviaqa.triviaqa_wiki_1shot_gen_20a989 import \
triviaqa_datasets # noqa: F401, E501
from opencompass.configs.datasets.wikibench.wikibench_few_shot_ppl_c23d79 import \
wikibench_datasets # noqa: F401, E501
from opencompass.configs.datasets.winogrande.winogrande_5shot_ll_252f01 import \
winogrande_datasets # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_7b import \
models as hf_internlm2_5_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b import \
models as lmdeploy_internlm2_5_7b_model # noqa: F401, E501
from opencompass.configs.summarizers.groups.bbh import \
bbh_summary_groups # noqa: F401, E501
# Summary Groups
from opencompass.configs.summarizers.groups.cmmlu import \
cmmlu_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.GaokaoBench import \
GaokaoBench_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.mathbench_v1_2024 import \
mathbench_2024_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.mmlu import \
mmlu_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.mmlu_pro import \
mmlu_pro_summary_groups # noqa: F401, E501
from ...volc import infer as volc_infer # noqa: F401, E501
race_datasets = [race_datasets[1]] # Only take RACE-High
humaneval_v2_datasets[0]['abbr'] = 'openai_humaneval_v2'
bbh_datasets = [
x for x in bbh_datasets if 'logical_deduction_seven_objects' in x['abbr']
or 'multistep_arithmetic_two' in x['abbr']
]
cmmlu_datasets = [
x for x in cmmlu_datasets if x['abbr'].replace('cmmlu-', '') in [
'ancient_chinese', 'chinese_civil_service_exam',
'chinese_driving_rule', 'chinese_food_culture',
'chinese_foreign_policy', 'chinese_history', 'chinese_literature',
'chinese_teacher_qualification', 'construction_project_management',
'elementary_chinese', 'elementary_commonsense', 'ethnology',
'high_school_politics', 'modern_chinese',
'traditional_chinese_medicine'
]
]
mmlu_datasets = [
x for x in mmlu_datasets if x['abbr'].replace('lukaemon_mmlu_', '') in [
'business_ethics', 'clinical_knowledge', 'college_medicine',
'global_facts', 'human_aging', 'management', 'marketing',
'medical_genetics', 'miscellaneous', 'nutrition',
'professional_accounting', 'professional_medicine', 'virology'
]
]
mmlu_pro_datasets = [mmlu_pro_datasets[0]]
mathbench_datasets = [x for x in mathbench_datasets if 'college' in x['abbr']]
GaokaoBench_datasets = [
x for x in GaokaoBench_datasets if '2010-2022_Math_II_MCQs' in x['abbr']
or '2010-2022_Math_II_Fill-in-the-Blank' in x['abbr']
]
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
summary_groups = sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
summary_groups.append(
{
'name': 'Mathbench',
'subsets': ['mathbench-a (average)', 'mathbench-t (average)'],
}, )
summarizer = dict(
dataset_abbrs=[
'Language',
['race-high', 'accuracy'],
['ARC-c', 'accuracy'],
['BoolQ', 'accuracy'],
['triviaqa_wiki_1shot', 'score'],
['nq_open_1shot', 'score'],
'',
'General Reasoning',
['drop', 'accuracy'],
['bbh', 'naive_average'],
['GPQA_diamond', 'accuracy'],
['hellaswag', 'accuracy'],
['TheoremQA', 'score'],
['winogrande', 'accuracy'],
'',
'Math Calculation',
['gsm8k', 'accuracy'],
['GaokaoBench', 'weighted_average'],
'GaokaoBench_2010-2022_Math_II_MCQs',
'GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank',
['math', 'accuracy'],
['Mathbench', 'naive_average'],
'',
'Knowledge',
['wikibench-wiki-single_choice_cncircular', 'perf_4'],
['cmmlu', 'naive_average'],
['mmlu', 'naive_average'],
['mmlu_pro', 'naive_average'],
'',
'Code',
['openai_humaneval', 'humaneval_pass@1'],
['openai_humaneval_v2', 'humaneval_pass@1'],
['sanitized_mbpp', 'score'],
'',
['dingo_en_192', 'score'],
['dingo_zh_170', 'score'],
'',
'mmlu',
'mmlu-stem',
'mmlu-social-science',
'mmlu-humanities',
['mmlu-other', 'accuracy'],
'',
'cmmlu',
'cmmlu-stem',
'cmmlu-social-science',
'cmmlu-humanities',
'cmmlu-other',
['cmmlu-china-specific', 'accuracy'],
'',
'mmlu_pro',
'mmlu_pro_biology',
'mmlu_pro_business',
'mmlu_pro_chemistry',
'mmlu_pro_computer_science',
'mmlu_pro_economics',
'mmlu_pro_engineering',
'mmlu_pro_health',
'mmlu_pro_history',
'mmlu_pro_law',
'mmlu_pro_math',
'mmlu_pro_philosophy',
'mmlu_pro_physics',
'mmlu_pro_psychology',
'mmlu_pro_other',
'',
'bbh-logical_deduction_seven_objects',
'bbh-multistep_arithmetic_two',
'###### MathBench-A: Application Part ######',
'college',
'high',
'middle',
'primary',
'arithmetic',
'mathbench-a (average)',
'###### MathBench-T: Theory Part ######',
'college_knowledge',
'high_knowledge',
'middle_knowledge',
'primary_knowledge',
'mathbench-t (average)',
],
summary_groups=summary_groups,
)
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
for d in datasets:
d['reader_cfg']['test_range'] = '[0:16]'
for m in models:
m['abbr'] = m['abbr'] + '_fullbench'
if 'turbomind' in m['abbr'] or 'lmdeploy' in m['abbr']:
m['engine_config']['max_batch_size'] = 1
m['batch_size'] = 1
models = sorted(models, key=lambda x: x['run_cfg']['num_gpus'])

View File

@ -0,0 +1,129 @@
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import \
gpqa_datasets # noqa: F401, E501
from opencompass.configs.datasets.gsm8k.gsm8k_gen_17d0dc import \
gsm8k_datasets # noqa: F401, E501
from opencompass.configs.datasets.race.race_ppl import \
race_datasets # noqa: F401, E501
from opencompass.configs.datasets.winogrande.winogrande_5shot_ll_252f01 import \
winogrande_datasets # noqa: F401, E501
# read hf models - chat models
from opencompass.configs.models.chatglm.lmdeploy_glm4_9b import \
models as lmdeploy_glm4_9b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_7b_base import \
models as hf_deepseek_7b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_7b_base import \
models as lmdeploy_deepseek_7b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_67b_base import \
models as lmdeploy_deepseek_67b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_v2 import \
lmdeploy_deepseek_v2_model # noqa: F401, E501
from opencompass.configs.models.deepseek.vllm_deepseek_moe_16b_base import \
models as vllm_deepseek_moe_16b_base_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma2_2b import \
models as hf_gemma2_2b_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma2_9b import \
models as hf_gemma2_9b_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma_2b import \
models as hf_gemma_2b_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma_7b import \
models as hf_gemma_7b_model # noqa: F401, E501
from opencompass.configs.models.gemma.lmdeploy_gemma_9b import \
models as lmdeploy_gemma_9b_model # noqa: F401, E501
from opencompass.configs.models.gemma.vllm_gemma_2b import \
models as vllm_gemma_2b_model # noqa: F401, E501
from opencompass.configs.models.gemma.vllm_gemma_7b import \
models as vllm_gemma_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_7b import \
models as hf_internlm2_5_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_7b import \
models as hf_internlm2_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_1_8b import \
models as lmdeploy_internlm2_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b import \
models as lmdeploy_internlm2_5_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_7b import \
models as lmdeploy_internlm2_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_20b import \
models as lmdeploy_internlm2_20b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_base_7b import \
models as lmdeploy_internlm2_base_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_base_20b import \
models as lmdeploy_internlm2_base_20b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama2_7b import \
models as hf_llama2_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_1_8b import \
models as hf_llama3_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_8b import \
models as hf_llama3_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b import \
models as lmdeploy_llama3_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_8b import \
models as lmdeploy_llama3_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_70b import \
models as lmdeploy_llama3_70b_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mistral_7b_v0_3 import \
models as hf_mistral_7b_v0_3_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen_2_5_7b import \
models as hf_qwen_2_5_7b_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen_2_5_14b import \
models as hf_qwen_2_5_14b_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen_2_5_32b import \
models as hf_qwen_2_5_32b_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_1_5b import \
models as lmdeploy_qwen2_5_1_5b_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b import \
models as lmdeploy_qwen2_5_7b_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_32b import \
models as lmdeploy_qwen2_5_32b_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_72b import \
models as lmdeploy_qwen2_5_72b_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen1_5_moe_a2_7b import \
models as hf_qwen1_5_moe_a2_7b_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen2_0_5b import \
models as hf_qwen2_0_5b_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen2_1_5b import \
models as hf_qwen2_1_5b_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen2_7b import \
models as hf_qwen2_7b_model # noqa: F401, E501
from opencompass.configs.models.qwen.lmdeploy_qwen2_1_5b import \
models as lmdeploy_qwen2_1_5b_model # noqa: F401, E501
from opencompass.configs.models.qwen.lmdeploy_qwen2_7b import \
models as lmdeploy_qwen2_7b_model # noqa: F401, E501
from opencompass.configs.models.qwen.vllm_qwen1_5_0_5b import \
models as vllm_qwen1_5_0_5b_model # noqa: F401, E501
from opencompass.configs.models.yi.hf_yi_1_5_6b import \
models as hf_yi_1_5_6b_model # noqa: F401, E501
from opencompass.configs.models.yi.hf_yi_1_5_9b import \
models as hf_yi_1_5_9b_model # noqa: F401, E501
from opencompass.configs.models.yi.lmdeploy_yi_1_5_9b import \
models as lmdeploy_yi_1_5_9b_model # noqa: F401, E501
from ...volc import infer as volc_infer # noqa: F401, E501
race_datasets = [race_datasets[1]]
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
for d in datasets:
d['reader_cfg']['test_range'] = '[0:32]'
for m in models:
if 'turbomind' in m['abbr'] or 'lmdeploy' in m['abbr']:
m['engine_config']['max_batch_size'] = 1
m['batch_size'] = 1
models = sorted(models, key=lambda x: x['run_cfg']['num_gpus'])
summarizer = dict(
dataset_abbrs=[
['gsm8k', 'accuracy'],
['GPQA_diamond', 'accuracy'],
['race-high', 'accuracy'],
['winogrande', 'accuracy'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)

View File

@ -0,0 +1,193 @@
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from opencompass.configs.datasets.gsm8k.gsm8k_gen import \
gsm8k_datasets # noqa: F401, E501
from opencompass.configs.datasets.race.race_gen import \
race_datasets # noqa: F401, E501
# read hf models - chat models
from opencompass.configs.models.chatglm.hf_glm4_9b_chat import \
models as hf_glm4_9b_chat_model # noqa: F401, E501
from opencompass.configs.models.chatglm.lmdeploy_glm4_9b_chat import \
models as lmdeploy_glm4_9b_chat_model # noqa: F401, E501
from opencompass.configs.models.chatglm.vllm_glm4_9b_chat import \
models as vllm_glm4_9b_chat_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_7b_chat import \
models as hf_deepseek_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_67b_chat import \
models as lmdeploy_deepseek_67b_chat_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_llama_8b import \
models as \
lmdeploy_deepseek_r1_distill_llama_8b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_llama_70b import \
models as \
lmdeploy_deepseek_r1_distill_llama_70b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_qwen_1_5b import \
models as \
lmdeploy_deepseek_r1_distill_qwen_1_5b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_qwen_32b import \
models as \
lmdeploy_deepseek_r1_distill_qwen_32b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_v2_5_1210 import \
models as lmdeploy_deepseek_v2_5_1210_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_v2_lite import \
models as lmdeploy_deepseek_v2_lite_model # noqa: F401, E501
from opencompass.configs.models.deepseek.vllm_deepseek_7b_chat import \
models as vllm_deepseek_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma2_2b_it import \
models as hf_gemma2_2b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma2_9b_it import \
models as hf_gemma2_9b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma2_27b_it import \
models as hf_gemma2_27b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma_2b_it import \
models as hf_gemma_2b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma_7b_it import \
models as hf_gemma_7b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.lmdeploy_gemma_9b_it import \
models as lmdeploy_gemma_9b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.lmdeploy_gemma_27b_it import \
models as lmdeploy_gemma_27b_it_model # noqa: F401, E501
from opencompass.configs.models.gemma.vllm_gemma_7b_it import \
models as vllm_gemma_7b_it_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_7b_chat import \
models as hf_internlm2_5_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_20b_chat import \
models as hf_internlm2_5_20b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm3_8b_instruct import \
models as hf_internlm3_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \
models as lmdeploy_internlm2_5_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import \
models as lmdeploy_internlm2_5_20b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_chat_1_8b import \
models as lmdeploy_internlm2_chat_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_chat_1_8b_sft import \
models as lmdeploy_internlm2_chat_1_8b_sft_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_chat_7b import \
models as lmdeploy_internlm2_chat_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_chat_7b_sft import \
models as lmdeploy_internlm2_chat_7b_sft_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm3_8b_instruct import \
models as lmdeploy_internlm3_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.vllm_internlm2_chat_7b import \
models as vllm_internlm2_chat_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_1_8b_instruct import \
models as hf_llama3_1_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_2_3b_instruct import \
models as hf_llama3_2_3b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_8b_instruct import \
models as hf_llama3_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama2_7b_chat import \
models as lmdeploy_llama2_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b_instruct import \
models as lmdeploy_llama3_1_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_2_3b_instruct import \
models as lmdeploy_llama3_2_3b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_3_70b_instruct import \
models as lmdeploy_llama3_3_70b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_8b_instruct import \
models as lmdeploy_llama3_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mistral_7b_instruct_v0_2 import \
models as hf_mistral_7b_instruct_v0_2_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mistral_7b_instruct_v0_3 import \
models as hf_mistral_7b_instruct_v0_3_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mistral_nemo_instruct_2407 import \
models as hf_mistral_nemo_instruct_2407_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mistral_small_instruct_2409 import \
models as hf_mistral_small_instruct_2409_model # noqa: F401, E501
from opencompass.configs.models.mistral.lmdeploy_mistral_large_instruct_2411 import \
models as \
lmdeploy_mistral_large_instruct_2411_model # noqa: F401, E501
from opencompass.configs.models.mistral.lmdeploy_mistral_nemo_instruct_2407 import \
models as lmdeploy_mistral_nemo_instruct_2407_model # noqa: F401, E501
from opencompass.configs.models.mistral.lmdeploy_mistral_small_instruct_2409 import \
models as \
lmdeploy_mistral_small_instruct_2409_model # noqa: F401, E501
from opencompass.configs.models.mistral.lmdeploy_mixtral_8x22b_instruct_v0_1 import \
models as \
lmdeploy_mixtral_8x22b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.mistral.vllm_mistral_7b_instruct_v0_1 import \
models as vllm_mistral_7b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.mistral.vllm_mistral_7b_instruct_v0_2 import \
models as vllm_mistral_7b_instruct_v0_2_model # noqa: F401, E501
from opencompass.configs.models.mistral.vllm_mixtral_8x22b_instruct_v0_1 import \
models as vllm_mixtral_8x22b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.nvidia.lmdeploy_nemotron_70b_instruct_hf import \
models as lmdeploy_nemotron_70b_instruct_hf_model # noqa: F401, E501
from opencompass.configs.models.phi.hf_phi_4 import \
models as hf_phi_4_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen2_5_0_5b_instruct import \
models as hf_qwen2_5_0_5b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen2_5_3b_instruct import \
models as hf_qwen2_5_3b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen2_5_14b_instruct import \
models as hf_qwen2_5_14b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_0_5b_instruct import \
models as lmdeploy_qwen2_5_0_5b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_3b_instruct import \
models as lmdeploy_qwen2_5_3b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_14b_instruct import \
models as lmdeploy_qwen2_5_14b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_72b_instruct import \
models as lmdeploy_qwen2_5_72b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen1_5_0_5b_chat import \
models as hf_qwen1_5_0_5b_chat_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen2_1_5b_instruct import \
models as hf_qwen2_1_5b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen.hf_qwen2_7b_instruct import \
models as hf_qwen2_7b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen.lmdeploy_qwen2_1_5b_instruct import \
models as lmdeploy_qwen2_1_5b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import \
models as lmdeploy_qwen2_7b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen.vllm_qwen1_5_0_5b_chat import \
models as vllm_qwen1_5_0_5b_chat_model # noqa: F401, E501
from opencompass.configs.models.yi.hf_yi_1_5_6b_chat import \
models as hf_yi_1_5_6b_chat_model # noqa: F401, E501
from opencompass.configs.models.yi.hf_yi_1_5_9b_chat import \
models as hf_yi_1_5_9b_chat_model # noqa: F401, E501
from opencompass.configs.models.yi.lmdeploy_yi_1_5_6b_chat import \
models as lmdeploy_yi_1_5_6b_chat_model # noqa: F401, E501
from opencompass.configs.models.yi.lmdeploy_yi_1_5_9b_chat import \
models as lmdeploy_yi_1_5_9b_chat_model # noqa: F401, E501
from opencompass.configs.models.yi.lmdeploy_yi_1_5_34b_chat import \
models as lmdeploy_yi_1_5_34b_chat_model # noqa: F401, E501
from ...volc import infer as volc_infer # noqa: F401, E501
hf_glm4_9b_chat_model[0]['path'] = 'THUDM/glm-4-9b-chat-hf'
race_datasets = [race_datasets[1]]
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
for d in datasets:
d['reader_cfg']['test_range'] = '[0:32]'
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
for m in models:
if 'turbomind' in m['abbr'] or 'lmdeploy' in m['abbr']:
m['engine_config']['max_batch_size'] = 1
m['batch_size'] = 1
models = sorted(models, key=lambda x: x['run_cfg']['num_gpus'])
summarizer = dict(
dataset_abbrs=[
'gsm8k',
'race-middle',
'race-high',
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)

View File

@ -0,0 +1,317 @@
from mmengine.config import read_base
with read_base():
# read hf models - chat models
# Dataset
from opencompass.configs.datasets.aime2024.aime2024_gen_6e39a4 import \
aime2024_datasets # noqa: F401, E501
from opencompass.configs.datasets.ARC_c.ARC_c_cot_gen_926652 import \
ARC_c_datasets # noqa: F401, E501
# remove because of oom
# from opencompass.configs.datasets.ARC_Prize_Public_Evaluation.arc_prize_public_evaluation_gen_872059 import arc_prize_public_evaluation_datasets # noqa: F401, E501
from opencompass.configs.datasets.bbh.bbh_gen_5b92b0 import \
bbh_datasets # noqa: F401, E501
from opencompass.configs.datasets.bigcodebench.bigcodebench_hard_complete_gen_faf748 import \
bigcodebench_hard_complete_datasets # noqa: F401, E501
from opencompass.configs.datasets.bigcodebench.bigcodebench_hard_instruct_gen_8815eb import \
bigcodebench_hard_instruct_datasets # noqa: F401, E501
from opencompass.configs.datasets.cmmlu.cmmlu_0shot_cot_gen_305931 import \
cmmlu_datasets # noqa: F401, E501
from opencompass.configs.datasets.cmo_fib.cmo_fib_gen_ace24b import \
cmo_fib_datasets # noqa: F401, E501
from opencompass.configs.datasets.drop.drop_openai_simple_evals_gen_3857b0 import \
drop_datasets # noqa: F401, E501
from opencompass.configs.datasets.ds1000.ds1000_service_eval_gen_cbc84f import \
ds1000_datasets # noqa: F401, E501
from opencompass.configs.datasets.GaokaoBench.GaokaoBench_no_subjective_gen_4c31db import \
GaokaoBench_datasets # noqa: F401, E501
from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import \
gpqa_datasets # noqa: F401, E501
# new datasets in Fullbench v1.1
from opencompass.configs.datasets.gsm8k.gsm8k_0shot_v2_gen_6e39a4 import \
gsm8k_datasets # noqa: F401, E501
from opencompass.configs.datasets.hellaswag.hellaswag_10shot_gen_e42710 import \
hellaswag_datasets # noqa: F401, E501
from opencompass.configs.datasets.humaneval.humaneval_openai_sample_evals_gen_dcae0e import \
humaneval_datasets # noqa: F401, E501
from opencompass.configs.datasets.humanevalx.humanevalx_gen_3d84a3 import \
humanevalx_datasets # noqa: F401, E501
from opencompass.configs.datasets.IFEval.IFEval_gen_353ae7 import \
ifeval_datasets # noqa: F401, E501
from opencompass.configs.datasets.korbench.korbench_single_0_shot_gen import \
korbench_0shot_single_datasets # noqa: F401, E501
from opencompass.configs.datasets.livecodebench.livecodebench_gen_b2b0fd import \
LCB_datasets # noqa: F401, E501
from opencompass.configs.datasets.math.math_0shot_gen_11c4b5 import \
math_datasets # noqa: F401, E501
from opencompass.configs.datasets.MathBench.mathbench_2024_gen_50a320 import \
mathbench_datasets # noqa: F401, E501
from opencompass.configs.datasets.mbpp.sanitized_mbpp_mdblock_gen_a447ff import \
sanitized_mbpp_datasets # noqa: F401, E501
from opencompass.configs.datasets.mmlu.mmlu_openai_simple_evals_gen_b618ea import \
mmlu_datasets # noqa: F401, E501
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_0shot_cot_gen_08c1de import \
mmlu_pro_datasets # noqa: F401, E501
from opencompass.configs.datasets.mmmlu_lite.mmmlu_lite_gen_c51a84 import \
mmmlu_lite_datasets # noqa: F401, E501
from opencompass.configs.datasets.musr.musr_gen_3622bb import \
musr_datasets # noqa: F401, E501
from opencompass.configs.datasets.nq.nq_open_1shot_gen_2e45e5 import \
nq_datasets # noqa: F401, E501
from opencompass.configs.datasets.race.race_cot_gen_d95929 import \
race_datasets # noqa: F401, E501
from opencompass.configs.datasets.scicode.scicode_gen_085b98 import \
SciCode_datasets # noqa: F401, E501
from opencompass.configs.datasets.SuperGLUE_BoolQ.SuperGLUE_BoolQ_cot_gen_1d56df import \
BoolQ_datasets # noqa: F401, E501
from opencompass.configs.datasets.teval.teval_en_gen_1ac254 import \
teval_datasets as teval_en_datasets # noqa: F401, E501
from opencompass.configs.datasets.teval.teval_zh_gen_1ac254 import \
teval_datasets as teval_zh_datasets # noqa: F401, E501
from opencompass.configs.datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import \
TheoremQA_datasets # noqa: F401, E501
from opencompass.configs.datasets.triviaqa.triviaqa_wiki_1shot_gen_bc5f21 import \
triviaqa_datasets # noqa: F401, E501
from opencompass.configs.datasets.wikibench.wikibench_gen_0978ad import \
wikibench_datasets # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_7b_chat import \
models as hf_internlm2_5_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \
models as lmdeploy_internlm2_5_7b_chat_model # noqa: F401, E501
# Summary Groups
# Summary Groups
from opencompass.configs.summarizers.groups.bbh import \
bbh_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.cmmlu import \
cmmlu_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.ds1000 import \
ds1000_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.GaokaoBench import \
GaokaoBench_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.humanevalx import \
humanevalx_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.korbench import \
korbench_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.mathbench_v1_2024 import \
mathbench_2024_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.mmlu import \
mmlu_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.mmlu_pro import \
mmlu_pro_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.musr_average import \
summarizer as musr_summarizer # noqa: F401, E501
from opencompass.configs.summarizers.groups.scicode import \
scicode_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.groups.teval import \
teval_summary_groups # noqa: F401, E501
from opencompass.configs.summarizers.mmmlu_lite import \
mmmlu_summary_groups # noqa: F401, E501
from ...volc import infer as volc_infer # noqa: F401, E501
# For HumanEval-X Evaluation
# Apply the evaluator ip_address and port
race_datasets = [race_datasets[1]]
for item in humanevalx_datasets:
item['eval_cfg']['evaluator'][
'ip_address'] = 'codeeval.opencompass.org.cn/humanevalx'
item['eval_cfg']['evaluator']['port'] = ''
# For DS-1000 Evaluation
# Apply the evaluator ip_address and port
for item in ds1000_datasets:
item['eval_cfg']['evaluator'][
'ip_address'] = 'codeeval.opencompass.org.cn/ds1000'
item['eval_cfg']['evaluator']['port'] = ''
bbh_datasets = [
x for x in bbh_datasets if 'logical_deduction_seven_objects' in x['abbr']
or 'multistep_arithmetic_two' in x['abbr']
]
cmmlu_datasets = [
x for x in cmmlu_datasets if x['abbr'].replace('cmmlu-', '') in [
'ancient_chinese', 'chinese_civil_service_exam',
'chinese_driving_rule', 'chinese_food_culture',
'chinese_foreign_policy', 'chinese_history', 'chinese_literature',
'chinese_teacher_qualification', 'construction_project_management',
'elementary_chinese', 'elementary_commonsense', 'ethnology',
'high_school_politics', 'modern_chinese',
'traditional_chinese_medicine'
]
]
mmlu_datasets = [
x for x in mmlu_datasets if x['abbr'].replace('lukaemon_mmlu_', '') in [
'business_ethics', 'clinical_knowledge', 'college_medicine',
'global_facts', 'human_aging', 'management', 'marketing',
'medical_genetics', 'miscellaneous', 'nutrition',
'professional_accounting', 'professional_medicine', 'virology'
]
]
mmlu_pro_datasets = [mmlu_pro_datasets[0]]
mmmlu_lite_datasets = [
x for x in mmmlu_lite_datasets if 'mmlu_lite_AR-XY' in x['abbr']
]
mathbench_datasets = [x for x in mathbench_datasets if 'college' in x['abbr']]
GaokaoBench_datasets = [
x for x in GaokaoBench_datasets if '2010-2022_Math_II_MCQs' in x['abbr']
or '2010-2022_Math_II_Fill-in-the-Blank' in x['abbr']
]
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')
and 'scicode' not in k.lower() and 'teval' not in k),
[],
)
datasets += teval_en_datasets
datasets += teval_zh_datasets
# datasets += SciCode_datasets
musr_summary_groups = musr_summarizer['summary_groups']
summary_groups = sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
summary_groups.append(
{
'name': 'Mathbench',
'subsets': ['mathbench-a (average)', 'mathbench-t (average)'],
}, )
# Summarizer
summarizer = dict(
dataset_abbrs=[
'Language',
['race-high', 'accuracy'],
['ARC-c', 'accuracy'],
['BoolQ', 'accuracy'],
['triviaqa_wiki_1shot', 'score'],
['nq_open_1shot', 'score'],
['mmmlu_lite', 'naive_average'],
'',
'Instruction Following',
['IFEval', 'Prompt-level-strict-accuracy'],
'',
'General Reasoning',
['drop', 'accuracy'],
['bbh', 'naive_average'],
['GPQA_diamond', 'accuracy'],
['hellaswag', 'accuracy'],
['TheoremQA', 'score'],
['musr_average', 'naive_average'],
['korbench_single', 'naive_average'],
['ARC_Prize_Public_Evaluation', 'accuracy'],
'',
'Math Calculation',
['gsm8k', 'accuracy'],
['GaokaoBench', 'weighted_average'],
['math', 'accuracy'],
['cmo_fib', 'accuracy'],
['aime2024', 'accuracy'],
['Mathbench', 'naive_average'],
'',
'Knowledge',
['wikibench-wiki-single_choice_cncircular', 'perf_4'],
['cmmlu', 'naive_average'],
['mmlu', 'naive_average'],
['mmlu_pro', 'naive_average'],
'',
'Code',
['openai_humaneval', 'humaneval_pass@1'],
['sanitized_mbpp', 'score'],
['humanevalx', 'naive_average'],
['ds1000', 'naive_average'],
['lcb_code_generation', 'pass@1'],
['lcb_code_execution', 'pass@1'],
['lcb_test_output', 'pass@1'],
['bigcodebench_hard_instruct', 'pass@1'],
['bigcodebench_hard_complete', 'pass@1'],
'',
'Agent',
['teval', 'naive_average'],
['SciCode', 'accuracy'],
['SciCode', 'sub_accuracy'],
'',
'bbh-logical_deduction_seven_objects',
'bbh-multistep_arithmetic_two',
'',
'mmlu',
'mmlu-stem',
'mmlu-social-science',
'mmlu-humanities',
'mmlu-other',
'',
'cmmlu',
'cmmlu-stem',
'cmmlu-social-science',
'cmmlu-humanities',
'cmmlu-other',
'cmmlu-china-specific',
'',
'mmlu_pro',
'mmlu_pro_biology',
'mmlu_pro_business',
'mmlu_pro_chemistry',
'mmlu_pro_computer_science',
'mmlu_pro_economics',
'mmlu_pro_engineering',
'mmlu_pro_health',
'mmlu_pro_history',
'mmlu_pro_law',
'mmlu_pro_math',
'mmlu_pro_philosophy',
'mmlu_pro_physics',
'mmlu_pro_psychology',
'mmlu_pro_other',
'',
'ds1000_Pandas',
'ds1000_Numpy',
'ds1000_Tensorflow',
'ds1000_Scipy',
'ds1000_Sklearn',
'ds1000_Pytorch',
'ds1000_Matplotlib',
'',
'mmmlu_lite',
'openai_mmmlu_lite_AR-XY',
'openai_mmmlu_lite_BN-BD',
'openai_mmmlu_lite_DE-DE',
'openai_mmmlu_lite_ES-LA',
'openai_mmmlu_lite_FR-FR',
'openai_mmmlu_lite_HI-IN',
'openai_mmmlu_lite_ID-ID',
'openai_mmmlu_lite_IT-IT',
'openai_mmmlu_lite_JA-JP',
'openai_mmmlu_lite_KO-KR',
'openai_mmmlu_lite_PT-BR',
'openai_mmmlu_lite_SW-KE',
'openai_mmmlu_lite_YO-NG',
'openai_mmmlu_lite_ZH-CN',
'',
'###### MathBench-A: Application Part ######',
'college',
'high',
'middle',
'primary',
'arithmetic',
'mathbench-a (average)',
'###### MathBench-T: Theory Part ######',
'college_knowledge',
'high_knowledge',
'middle_knowledge',
'primary_knowledge',
'mathbench-t (average)',
],
summary_groups=summary_groups,
)
for d in datasets:
d['reader_cfg']['test_range'] = '[0:16]'
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
for m in models:
m['abbr'] = m['abbr'] + '_fullbench'
if 'turbomind' in m['abbr'] or 'lmdeploy' in m['abbr']:
m['engine_config']['max_batch_size'] = 1
m['batch_size'] = 1
models = sorted(models, key=lambda x: x['run_cfg']['num_gpus'])

View File

@ -0,0 +1,182 @@
from copy import deepcopy
from mmengine.config import read_base
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.summarizers import DefaultSubjectiveSummarizer
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
with read_base():
# read hf models - chat models
# Dataset
from opencompass.configs.datasets.chinese_simpleqa.chinese_simpleqa_gen import \
csimpleqa_datasets # noqa: F401, E501
from opencompass.configs.datasets.SimpleQA.simpleqa_gen_0283c3 import \
simpleqa_datasets # noqa: F401, E501; noqa: F401, E501
from opencompass.configs.datasets.subjective.alignbench.alignbench_v1_1_judgeby_critiquellm_new import \
alignbench_datasets # noqa: F401, E501
from opencompass.configs.datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4_new import \
alpacav2_datasets # noqa: F401, E501
from opencompass.configs.datasets.subjective.arena_hard.arena_hard_compare_new import \
arenahard_datasets # noqa: F401, E501
from opencompass.configs.datasets.subjective.compassarena.compassarena_compare_new import \
compassarena_datasets # noqa: F401, E501
# from opencompass.configs.datasets.subjective.fofo.fofo_bilingual_judge_new import fofo_datasets # noqa: F401, E501
from opencompass.configs.datasets.subjective.followbench.followbench_llmeval_new import \
followbench_llmeval_datasets # noqa: F401, E501
from opencompass.configs.datasets.subjective.multiround.mtbench101_judge_new import \
mtbench101_datasets # noqa: F401, E501
from opencompass.configs.datasets.subjective.wildbench.wildbench_pair_judge_new import \
wildbench_datasets # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_7b_chat import \
models as hf_internlm2_5_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \
models as lmdeploy_internlm2_5_7b_chat_model # noqa: F401, E501
from ...volc import infer as volc_infer # noqa: F401, E501
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')
and 'mtbench101' not in k and 'wildbench' not in k), [])
datasets += mtbench101_datasets # noqa: F401, E501
datasets += wildbench_datasets # noqa: F401, E501
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
for m in models:
m['abbr'] = m['abbr'] + '_fullbench'
if 'turbomind' in m['abbr'] or 'lmdeploy' in m['abbr']:
m['engine_config']['max_batch_size'] = 1
m['batch_size'] = 1
models = sorted(models, key=lambda x: x['run_cfg']['num_gpus'])
judge_models = deepcopy([models[1]])
judge_models[0]['abbr'] = judge_models[0]['abbr'] + '-judge'
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner,
max_num_workers=16,
task=dict(type=SubjectiveEvalTask)),
)
summary_groups = []
summary_groups.append({
'name': 'compassarena_language',
'subsets': [
['compassarena_language', '内容总结'],
],
})
summary_groups.append({
'name': 'compassarena_knowledge',
'subsets': [
['compassarena_knowledge', '生活常识_ZH'],
],
})
summary_groups.append({
'name': 'compassarena_reason_v2',
'subsets': [
['compassarena_reason_v2', 'reasoning'],
],
})
summary_groups.append({
'name': 'compassarena_math_v2',
'subsets': [
['compassarena_math_v2', '高等数学_ZH'],
],
})
summary_groups.append({
'name': 'compassarena_creationv2_zh',
'subsets': [
['compassarena_creationv2_zh', '内容扩写_ZH'],
],
})
summary_groups.append({
'name':
'CompassArena',
'subsets': [
'compassarena_language',
'compassarena_knowledge',
'compassarena_reason_v2',
'compassarena_math_v2',
'compassarena_creationv2_zh',
],
})
summary_groups.append({
'name':
'FoFo',
'subsets': [['fofo_test_prompts', 'overall'],
['fofo_test_prompts_cn', 'overall']],
})
summary_groups.append({
'name':
'Followbench',
'subsets': [
['followbench_llmeval_en', 'HSR_AVG'],
['followbench_llmeval_en', 'SSR_AVG'],
],
})
# Summarizer
summarizer = dict(
dataset_abbrs=[
['alignment_bench_v1_1', '总分'],
['alpaca_eval', 'total'],
['arenahard', 'score'],
['Followbench', 'naive_average'],
['CompassArena', 'naive_average'],
['FoFo', 'naive_average'],
['mtbench101', 'avg'],
['wildbench', 'average'],
['simpleqa', 'accuracy_given_attempted'],
['chinese_simpleqa', 'given_attempted_accuracy'],
'',
['alignment_bench_v1_1', '专业能力'],
['alignment_bench_v1_1', '数学计算'],
['alignment_bench_v1_1', '基本任务'],
['alignment_bench_v1_1', '逻辑推理'],
['alignment_bench_v1_1', '中文理解'],
['alignment_bench_v1_1', '文本写作'],
['alignment_bench_v1_1', '角色扮演'],
['alignment_bench_v1_1', '综合问答'],
['alpaca_eval', 'helpful_base'],
['alpaca_eval', 'koala'],
['alpaca_eval', 'oasst'],
['alpaca_eval', 'selfinstruct'],
['alpaca_eval', 'vicuna'],
['compassarena_language', 'naive_average'],
['compassarena_knowledge', 'naive_average'],
['compassarena_reason_v2', 'naive_average'],
['compassarena_math_v2', 'naive_average'],
['compassarena_creationv2_zh', 'naive_average'],
['fofo_test_prompts', 'overall'],
['fofo_test_prompts_cn', 'overall'],
['followbench_llmeval_en', 'HSR_AVG'],
['followbench_llmeval_en', 'SSR_AVG'],
['followbench_llmeval_en', 'HSR_L1'],
['followbench_llmeval_en', 'HSR_L2'],
['followbench_llmeval_en', 'HSR_L3'],
['followbench_llmeval_en', 'HSR_L4'],
['followbench_llmeval_en', 'HSR_L5'],
['followbench_llmeval_en', 'SSR_L1'],
['followbench_llmeval_en', 'SSR_L2'],
['followbench_llmeval_en', 'SSR_L3'],
['followbench_llmeval_en', 'SSR_L4'],
['followbench_llmeval_en', 'SSR_L5'],
['simpleqa', 'f1'],
],
type=DefaultSubjectiveSummarizer,
summary_groups=summary_groups,
)

View File

@ -6,11 +6,29 @@ import yaml
output_path = 'regression_result_daily'
model_list = ['internlm2-7b-hf', 'internlm-chat-7b-hf', 'chatglm3-6b-base-hf']
dataset_list = [
'ARC-c', 'chid-dev', 'chid-test', 'openai_humaneval', 'openbookqa',
'openbookqa_fact'
]
def model_list(type):
config_path = '.github/scripts/oc_score_baseline_testrange.yaml'
with open(config_path) as f:
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
return config.get(type).keys()
def dataset_list(model, type):
config_path = '.github/scripts/oc_score_baseline_fullbench.yaml'
with open(config_path) as f:
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
return config.get(model).get(type).keys()
@pytest.fixture()
def baseline_scores_testrange(request):
config_path = os.path.join(
request.config.rootdir,
'.github/scripts/oc_score_baseline_testrange.yaml')
with open(config_path) as f:
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
return config
@pytest.fixture()
@ -22,6 +40,16 @@ def baseline_scores(request):
return config
@pytest.fixture()
def baseline_scores_fullbench(request):
config_path = os.path.join(
request.config.rootdir,
'.github/scripts/oc_score_baseline_fullbench.yaml')
with open(config_path) as f:
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
return config
@pytest.fixture()
def result_scores():
file = find_csv_files(output_path)
@ -31,55 +59,314 @@ def result_scores():
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores')
@pytest.mark.usefixtures('baseline_scores_testrange')
@pytest.mark.chat_models
class TestChat:
"""Test cases for chat model."""
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in model_list
for p2 in dataset_list])
def test_model_dataset_score(self, baseline_scores, result_scores, model,
dataset):
@pytest.mark.parametrize(
'model, dataset', [(p1, p2) for p1 in model_list('chat')
for p2 in ['gsm8k_accuracy', 'race-high_accuracy']])
def test_model_dataset_score(self, baseline_scores_testrange,
result_scores, model, dataset):
base_score = baseline_scores_testrange.get('chat').get(model).get(
dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores_testrange')
@pytest.mark.base_models
class TestBase:
"""Test cases for base model."""
@pytest.mark.parametrize('model, dataset',
[(p1, p2) for p1 in model_list('base') for p2 in [
'gsm8k_accuracy', 'GPQA_diamond_accuracy',
'race-high_accuracy', 'winogrande_accuracy'
]])
def test_model_dataset_score(self, baseline_scores_testrange,
result_scores, model, dataset):
if model in ['gemma-2b-vllm', 'gemma-7b-vllm'
] and dataset != 'gsm8k_accuracy':
return
base_score = baseline_scores_testrange.get('base').get(model).get(
dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores_fullbench')
@pytest.mark.chat_obj_fullbench
class TestChatObjFullbench:
"""Test cases for chat model."""
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
'internlm2_5-7b-chat-hf_fullbench',
'internlm2_5-7b-chat-turbomind_fullbench'
] for p2 in dataset_list('internlm2_5-7b-chat-hf_fullbench', 'objective')])
def test_model_dataset_score(self, baseline_scores_fullbench,
result_scores, model, dataset):
base_score = baseline_scores_fullbench.get(model).get('objective').get(
dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores_fullbench')
@pytest.mark.chat_sub_fullbench
class TestChatSubFullbench:
"""Test cases for chat model."""
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
'internlm2_5-7b-chat-hf_fullbench',
'internlm2_5-7b-chat-turbomind_fullbench'
] for p2 in dataset_list('internlm2_5-7b-chat-hf_fullbench', 'subjective')]
)
def test_model_dataset_score(self, baseline_scores_fullbench,
result_scores, model, dataset):
base_score = baseline_scores_fullbench.get(model).get(
'subjective').get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores_fullbench')
@pytest.mark.base_fullbench
class TestBaseFullbench:
"""Test cases for chat model."""
@pytest.mark.parametrize(
'model, dataset',
[(p1, p2) for p1 in
['internlm2_5-7b-hf_fullbench', 'internlm2_5-7b-turbomind_fullbench']
for p2 in dataset_list('internlm2_5-7b-hf_fullbench', 'objective')])
def test_model_dataset_score(self, baseline_scores_fullbench,
result_scores, model, dataset):
base_score = baseline_scores_fullbench.get(model).get('objective').get(
dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores')
@pytest.mark.api
class TestApibench:
"""Test cases for chat model."""
@pytest.mark.parametrize('model, dataset',
[('lmdeploy-api-test', 'race-middle_accuracy'),
('lmdeploy-api-test', 'race-high_accuracy'),
('lmdeploy-api-test', 'gsm8k_accuracy')])
def test_api(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(result_score, base_score)
assert_score(model + '_batch', result_score, base_score, dataset)
def assert_score(score, baseline):
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores_fullbench')
@pytest.mark.volc_fullbench
class TestVolcFullbench:
"""Test cases for chat model."""
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
'internlm2_5-7b-chat-turbomind', 'qwen2.5-7b-instruct-turbomind',
'internlm2_5-7b-chat-pytorch', 'qwen2.5-7b-instruct-pytorch',
'internlm3-8b-instruct-turbomind', 'internlm3-8b-instruct-pytorch'
] for p2 in dataset_list(p1, 'objective')])
@pytest.mark.chat_objective
def test_chat_objective(self, baseline_scores_fullbench, result_scores,
model, dataset):
base_score = baseline_scores_fullbench.get(model).get('objective').get(
dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.parametrize('model, dataset', [
(p1, p2) for p1 in ['internlm2_5-7b-chat-turbomind']
for p2 in dataset_list('internlm2_5-7b-chat-turbomind', 'subjective')
])
@pytest.mark.chat_subjective
def test_chat_subjective(self, baseline_scores_fullbench, result_scores,
model, dataset):
base_score = baseline_scores_fullbench.get(model).get(
'subjective').get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.parametrize(
'model, dataset',
[(p1, p2) for p1 in ['internlm2_5-7b-turbomind']
for p2 in dataset_list('internlm2_5-7b-turbomind', 'objective')])
@pytest.mark.base_objective
def test_base_objective(self, baseline_scores_fullbench, result_scores,
model, dataset):
base_score = baseline_scores_fullbench.get(model).get('objective').get(
dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.parametrize(
'model, dataset',
[(p1, p2) for p1 in ['internlm2_5-7b-turbomind']
for p2 in dataset_list('internlm2_5-7b-turbomind', 'long_context')])
@pytest.mark.base_long_context
def test_base_long_context(self, baseline_scores_fullbench, result_scores,
model, dataset):
base_score = baseline_scores_fullbench.get(model).get(
'long_context').get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.parametrize(
'model, dataset',
[(p1, p2)
for p1 in ['internlm2_5-7b-chat-1m-turbomind'] for p2 in dataset_list(
'internlm2_5-7b-chat-1m-turbomind', 'long_context')])
@pytest.mark.chat_long_context
def test_chat_long_context(self, baseline_scores_fullbench, result_scores,
model, dataset):
base_score = baseline_scores_fullbench.get(model).get(
'long_context').get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.usefixtures('result_scores')
@pytest.mark.usefixtures('baseline_scores')
class TestCmdCase:
@pytest.mark.case1
@pytest.mark.parametrize('model, dataset',
[('internlm2_5-7b-hf', 'race-middle_accuracy'),
('internlm2_5-7b-hf', 'race-high_accuracy'),
('internlm2_5-7b-hf', 'demo_gsm8k_accuracy')])
def test_cmd_case1(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.case2
@pytest.mark.parametrize(
'model, dataset',
[('internlm2_5-7b-chat-lmdeploy', 'race-middle_accuracy'),
('internlm2_5-7b-chat-lmdeploy', 'race-high_accuracy'),
('internlm2_5-7b-chat-lmdeploy', 'demo_gsm8k_accuracy'),
('internlm3-8b-instruct-lmdeploy', 'race-middle_accuracy'),
('internlm3-8b-instruct-lmdeploy', 'race-high_accuracy'),
('internlm3-8b-instruct-lmdeploy', 'demo_gsm8k_accuracy')])
def test_cmd_case2(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.case3
@pytest.mark.parametrize('model, dataset',
[('internlm2_5-7b_hf', 'race-middle_accuracy'),
('internlm2_5-7b_hf', 'race-high_accuracy'),
('internlm2_5-7b_hf', 'demo_gsm8k_accuracy')])
def test_cmd_case3(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset)
@pytest.mark.case4
@pytest.mark.parametrize(
'model, dataset',
[('internlm3-8b-instruct_hf-lmdeploy', 'race-middle_accuracy'),
('internlm3-8b-instruct_hf-lmdeploy', 'race-high_accuracy'),
('internlm3-8b-instruct_hf-lmdeploy', 'demo_gsm8k_accuracy')])
def test_cmd_case4(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.case5
@pytest.mark.parametrize(
'model, dataset',
[('internlm3-8b-instruct_hf-vllm', 'race-middle_accuracy'),
('internlm3-8b-instruct_hf-vllm', 'race-high_accuracy'),
('internlm3-8b-instruct_hf-vllm', 'demo_gsm8k_accuracy')])
def test_cmd_case5(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
def assert_score(model_type, score, baseline, dataset: str = ''):
if score is None or score == '-':
assert False, 'value is none'
if float(score) < (baseline * 1.03) and float(score) > (baseline * 0.97):
print(score + ' between ' + str(baseline * 0.97) + ' and ' +
str(baseline * 1.03))
if 'batch' not in model_type:
if float(score) <= (baseline + 0.01) and float(score) >= (baseline -
0.01):
print(' '.join([score, 'is equal', str(baseline)]))
assert True
else:
assert False, score + ' not between ' + str(
baseline * 0.97) + ' and ' + str(baseline * 1.03)
print(' '.join([score, 'is not equal', str(baseline)]))
assert False, ' '.join([score, 'is not equal', str(baseline)])
else:
if dataset.startswith('dingo') or dataset.startswith(
'GPQA') or dataset.startswith('high') or dataset.startswith(
'mmlu_pro_') or dataset.startswith(
'alpaca_eval') or dataset.startswith('compassarena_'):
threshold = 5
elif dataset.startswith('humanevalx') or dataset == 'large_threshold':
threshold = 10
else:
threshold = 3
if float(score) <= (baseline + threshold) and float(score) >= (
baseline - threshold):
print(' '.join([
score, 'is between',
str(baseline - threshold), 'and',
str(baseline + threshold)
]))
assert True
else:
print(' '.join([
score, 'is not between',
str(baseline - threshold), 'and',
str(baseline + threshold)
]))
assert False, ' '.join([
score, 'is not between',
str(baseline - threshold), 'and',
str(baseline + threshold)
])
def find_csv_files(directory):
csv_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.csv'):
if file.endswith('.csv') and file.startswith('summary'):
csv_files.append(os.path.join(root, file))
if len(csv_files) > 1:
raise 'have more than 1 result file, please check the result manually'
if len(csv_files) == 0:
return None
return csv_files[0]
csv_files_with_time = {f: os.path.getctime(f) for f in csv_files}
sorted_csv_files = sorted(csv_files_with_time.items(), key=lambda x: x[1])
latest_csv_file = sorted_csv_files[-1][0]
return latest_csv_file
def read_csv_file(file_path):
with open(file_path, 'r') as csvfile:
reader = csv.DictReader(csvfile)
filtered_data = []
for row in reader:
filtered_row = {
k: v
for k, v in row.items()
if k not in ['version', 'metric', 'mode']
}
if row['metric'] is not None and 'bpb' not in row[
'metric'] and '_' != row['metric']:
filtered_row = row
filtered_row['dataset'] = row['dataset'] + '_' + row['metric']
del filtered_row['version']
del filtered_row['metric']
del filtered_row['mode']
filtered_data.append(filtered_row)
result = {}

View File

@ -1,31 +1,39 @@
internlm-7b-hf:
ARC-c: 34.24
chid-dev: 79.70
chid-test: 81.12
openai_humaneval: 10.98
openbookqa: 47.20
openbookqa_fact: 74.00
internlm2_5-7b-hf:
demo_gsm8k_accuracy: 42.19
race-middle_accuracy: 91.78
race-high_accuracy: 90.02
internlm-chat-7b-hf:
ARC-c: 36.95
chid-dev: 71.78
chid-test: 76.87
openai_humaneval: 21.34
openbookqa: 66.6
openbookqa_fact: 80.4
internlm2_5-7b_hf:
demo_gsm8k_accuracy: 42.19
race-middle_accuracy: 91.78
race-high_accuracy: 90.02
chatglm3-6b-base-hf:
ARC-c: 44.41
chid-dev: 78.22
chid-test: 78.57
openai_humaneval: 20.73
openbookqa: 78.40
openbookqa_fact: 92.00
internlm2_5-7b-chat-lmdeploy:
demo_gsm8k_accuracy: 84.38
race-middle_accuracy: 92.76
race-high_accuracy: 90.54
internlm2-7b-hf:
ARC-c: 34.92
chid-dev: 55.94
chid-test: 53.70
openai_humaneval: 44.51
openbookqa: 83.00
openbookqa_fact: 83.00
internlm3-8b-instruct-lmdeploy:
demo_gsm8k_accuracy: 73.44
race-middle_accuracy: 93.38
race-high_accuracy: 90.34
internlm3-8b-instruct_hf-lmdeploy:
demo_gsm8k_accuracy: 73.44
race-middle_accuracy: 93.38
race-high_accuracy: 90.34
internlm3-8b-instruct_hf-vllm:
demo_gsm8k_accuracy: 78.12
race-middle_accuracy: 92.20
race-high_accuracy: 89.88
internlm2_5-7b-chat_hf:
demo_gsm8k_accuracy: 87.50
race-middle_accuracy: 92.76
race-high_accuracy: 90.48
lmdeploy-api-test:
gsm8k_accuracy: 68.75
race-middle_accuracy: 93.75
race-high_accuracy: 93.75

View File

@ -0,0 +1,983 @@
internlm2_5-7b-chat-hf_fullbench:
objective:
race-high_accuracy: 93.75
ARC-c_accuracy: 93.75
BoolQ_accuracy: 81.25
triviaqa_wiki_1shot_score: 50
nq_open_1shot_score: 25
IFEval_Prompt-level-strict-accuracy: 50
drop_accuracy: 81.25
GPQA_diamond_accuracy: 25
hellaswag_accuracy: 87.5
TheoremQA_score: 12.50
musr_average_naive_average: 39.58
korbench_single_naive_average: 40
gsm8k_accuracy: 62.50
math_accuracy: 75
cmo_fib_accuracy: 6.25
aime2024_accuracy: 6.25
wikibench-wiki-single_choice_cncircular_perf_4: 50
sanitized_mbpp_score: 68.75
ds1000_naive_average: 16.96
lcb_code_generation_pass@1: 12.5
lcb_code_execution_pass@1: 43.75
lcb_test_output_pass@1: 18.75
bbh-logical_deduction_seven_objects_score: 50
bbh-multistep_arithmetic_two_score: 68.75
mmlu-other_accuracy: 72.6
cmmlu-china-specific_accuracy: 76.25
mmlu_pro_math_accuracy: 25
ds1000_Pandas_accuracy: 12.5
ds1000_Numpy_accuracy: 0
ds1000_Tensorflow_accuracy: 12.5
ds1000_Scipy_accuracy: 18.75
ds1000_Sklearn_accuracy: 18.75
ds1000_Pytorch_accuracy: 12.5
ds1000_Matplotlib_accuracy: 43.75
openai_mmmlu_lite_AR-XY_accuracy: 37.5
college_naive_average: 12.5
college_knowledge_naive_average: 87.5
subjective:
alignment_bench_v1_1_总分: 0.66
alpaca_eval_total: 20.00
arenahard_score: 56.82
Followbench_naive_average: 1
CompassArena_naive_average: 43
mtbench101_avg: 7.60
wildbench_average: -14.58
simpleqa_accuracy_given_attempted: 1.00
chinese_simpleqa_given_attempted_accuracy: 0.90
alignment_bench_v1_1_专业能力: 7.90
alignment_bench_v1_1_数学计算: 0
alignment_bench_v1_1_基本任务: 0
alignment_bench_v1_1_逻辑推理: 0
alignment_bench_v1_1_中文理解: 0
alignment_bench_v1_1_文本写作: 0
alignment_bench_v1_1_角色扮演: 0
alignment_bench_v1_1_综合问答: 0
alpaca_eval_helpful_base: 20.00
compassarena_language_naive_average: 35
compassarena_knowledge_naive_average: 60.00
compassarena_reason_v2_naive_average: 40
compassarena_math_v2_naive_average: 50.00
compassarena_creationv2_zh_naive_average: 30
followbench_llmeval_en_HSR_AVG: 1
followbench_llmeval_en_SSR_AVG: 1
followbench_llmeval_en_HSR_L1: 1
followbench_llmeval_en_HSR_L2: 1
followbench_llmeval_en_HSR_L3: 1
followbench_llmeval_en_HSR_L4: 1
followbench_llmeval_en_HSR_L5: 1
followbench_llmeval_en_SSR_L1: 1
followbench_llmeval_en_SSR_L2: 1
followbench_llmeval_en_SSR_L3: 1
followbench_llmeval_en_SSR_L4: 1
followbench_llmeval_en_SSR_L5: 1
simpleqa_f1: 0.12
internlm2_5-7b-chat-turbomind_fullbench:
objective:
race-high_accuracy: 93.75
ARC-c_accuracy: 93.75
BoolQ_accuracy: 75.00
triviaqa_wiki_1shot_score: 50
nq_open_1shot_score: 25
IFEval_Prompt-level-strict-accuracy: 56.25
drop_accuracy: 75
GPQA_diamond_accuracy: 37.50
hellaswag_accuracy: 81.25
TheoremQA_score: 12.5
musr_average_naive_average: 39.58
korbench_single_naive_average: 40
gsm8k_accuracy: 68.75
math_accuracy: 68.75
cmo_fib_accuracy: 6.25
aime2024_accuracy: 6.25
wikibench-wiki-single_choice_cncircular_perf_4: 25
sanitized_mbpp_score: 68.75
ds1000_naive_average: 15.18
lcb_code_generation_pass@1: 12.5
lcb_code_execution_pass@1: 43.75
lcb_test_output_pass@1: 0.00
bbh-logical_deduction_seven_objects_score: 62.50
bbh-multistep_arithmetic_two_score: 62.50
mmlu-other_accuracy: 73.08
cmmlu-china-specific_accuracy: 75.42
mmlu_pro_math_accuracy: 25.00
ds1000_Pandas_accuracy: 0.00
ds1000_Numpy_accuracy: 0
ds1000_Tensorflow_accuracy: 12.5
ds1000_Scipy_accuracy: 18.75
ds1000_Sklearn_accuracy: 18.75
ds1000_Pytorch_accuracy: 12.50
ds1000_Matplotlib_accuracy: 43.75
openai_mmmlu_lite_AR-XY_accuracy: 37.5
college_naive_average: 12.50
college_knowledge_naive_average: 87.5
subjective:
alignment_bench_v1_1_总分: 0.72
alpaca_eval_total: 20.00
arenahard_score: 55.77
Followbench_naive_average: 1
CompassArena_naive_average: 39.00
mtbench101_avg: 7.90
wildbench_average: 0.00
simpleqa_accuracy_given_attempted: 1.00
chinese_simpleqa_given_attempted_accuracy: 1
alignment_bench_v1_1_专业能力: 8.70
alignment_bench_v1_1_数学计算: 0
alignment_bench_v1_1_基本任务: 0
alignment_bench_v1_1_逻辑推理: 0
alignment_bench_v1_1_中文理解: 0
alignment_bench_v1_1_文本写作: 0
alignment_bench_v1_1_角色扮演: 0
alignment_bench_v1_1_综合问答: 0
alpaca_eval_helpful_base: 20.00
compassarena_language_naive_average: 25.00
compassarena_knowledge_naive_average: 55.00
compassarena_reason_v2_naive_average: 35.00
compassarena_math_v2_naive_average: 55.00
compassarena_creationv2_zh_naive_average: 25.00
followbench_llmeval_en_HSR_AVG: 1
followbench_llmeval_en_SSR_AVG: 1
followbench_llmeval_en_HSR_L1: 1
followbench_llmeval_en_HSR_L2: 1
followbench_llmeval_en_HSR_L3: 1
followbench_llmeval_en_HSR_L4: 1
followbench_llmeval_en_HSR_L5: 1
followbench_llmeval_en_SSR_L1: 1
followbench_llmeval_en_SSR_L2: 1
followbench_llmeval_en_SSR_L3: 1
followbench_llmeval_en_SSR_L4: 1
followbench_llmeval_en_SSR_L5: 1
simpleqa_f1: 0.12
internlm2_5-7b-hf_fullbench:
objective:
race-high_accuracy: 100
ARC-c_accuracy: 68.75
BoolQ_accuracy: 87.5
triviaqa_wiki_1shot_score: 43.75
nq_open_1shot_score: 43.75
drop_accuracy: 62.5
GPQA_diamond_accuracy: 62.5
hellaswag_accuracy: 93.75
TheoremQA_score: 18.75
winogrande_accuracy: 75
gsm8k_accuracy: 37.5
GaokaoBench_2010-2022_Math_II_MCQs_score: 62.5
GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank_score: 0
math_accuracy: 12.5
wikibench-wiki-single_choice_cncircular_perf_4: 25
sanitized_mbpp_score: 56.25
dingo_en_192_score: 37.5
dingo_zh_170_score: 100
mmlu-other_accuracy: 76.92
cmmlu-china-specific_accuracy: 84.17
mmlu_pro_math_accuracy: 18.75
bbh-logical_deduction_seven_objects_score: 43.75
bbh-multistep_arithmetic_two_score: 56.25
college_naive_average: 12.5
college_knowledge_naive_average: 87.5
internlm2_5-7b-turbomind_fullbench:
objective:
race-high_accuracy: 100
ARC-c_accuracy: 68.75
BoolQ_accuracy: 87.5
triviaqa_wiki_1shot_score: 43.75
nq_open_1shot_score: 43.75
drop_accuracy: 62.5
GPQA_diamond_accuracy: 68.75
hellaswag_accuracy: 93.75
TheoremQA_score: 18.75
winogrande_accuracy: 87.5
gsm8k_accuracy: 62.50
GaokaoBench_2010-2022_Math_II_MCQs_score: 93.75
GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank_score: 0
math_accuracy: 6.25
wikibench-wiki-single_choice_cncircular_perf_4: 0.00
sanitized_mbpp_score: 62.50
dingo_en_192_score: 37.50
dingo_zh_170_score: 100.00
mmlu-other_accuracy: 78.37
cmmlu-china-specific_accuracy: 83.33
mmlu_pro_math_accuracy: 18.75
bbh-logical_deduction_seven_objects_score: 62.50
bbh-multistep_arithmetic_two_score: 50.00
college_naive_average: 12.5
college_knowledge_naive_average: 87.5
internlm2_5-7b-turbomind:
objective:
race-high_accuracy: 89.28
ARC-c_accuracy: 52.2
BoolQ_accuracy: 89.72
triviaqa_wiki_1shot_score: 65.88
nq_open_1shot_score: 34.82
drop_accuracy: 68.1
bbh_naive_average: 72.15
GPQA_diamond_accuracy: 32.83
hellaswag_accuracy: 88.36
TheoremQA_score: 25
winogrande_accuracy: 81.29
gsm8k_accuracy: 74.68
GaokaoBench_weighted_average: 58.19
math_accuracy: 33.98
Mathbench_naive_average: 48.38
wikibench-wiki-single_choice_cncircular_perf_4: 29.1
cmmlu_naive_average: 78.94
mmlu_naive_average: 71.44
mmlu_pro_naive_average: 38.18
openai_humaneval_humaneval_pass@1: 59.76
openai_humaneval_v2_humaneval_pass@1: 57.93
sanitized_mbpp_score: 55.25
dingo_en_192_score: 60.94
dingo_zh_170_score: 67.65
mmlu-stem_accuracy: 63.72
mmlu-social-science_accuracy: 80.15
mmlu-humanities_accuracy: 74.27
mmlu-other_accuracy: 71.85
cmmlu-stem_accuracy: 67.07
cmmlu-social-science_accuracy: 81.49
cmmlu-humanities_accuracy: 85.84
cmmlu-other_accuracy: 82.69
cmmlu-china-specific_accuracy: 79.88
mmlu_pro_biology_accuracy: 58.58
mmlu_pro_business_accuracy: 28.01
mmlu_pro_chemistry_accuracy: 22.79
mmlu_pro_computer_science_accuracy: 39.02
mmlu_pro_economics_accuracy: 53.08
mmlu_pro_engineering_accuracy: 25.7
mmlu_pro_health_accuracy: 46.94
mmlu_pro_history_accuracy: 43.04
mmlu_pro_law_accuracy: 29.7
mmlu_pro_math_accuracy: 24.2
mmlu_pro_philosophy_accuracy: 42.48
mmlu_pro_physics_accuracy: 26.02
mmlu_pro_psychology_accuracy: 52.76
mmlu_pro_other_accuracy: 42.21
college_naive_average: 7.00
high_naive_average: 6.67
middle_naive_average: 26.67
primary_naive_average: 64.00
arithmetic_naive_average: 55
mathbench-a (average)_naive_average: 31.8
college_knowledge_naive_average: 58.23
high_knowledge_naive_average: 52.51
middle_knowledge_naive_average: 71.15
primary_knowledge_naive_average: 60.48
mathbench-t (average)_naive_average: 60.19
long_context:
Single-Needle-Retrieval(S-RT)-32000_naive_average: 100
Single-Needle-Retrieval-EN-32000_naive_average: 100
Single-Needle-Retrieval-ZH-32000_naive_average: 100
Single-Needle-Retrieval(S-RT)-100000_naive_average: 100
Single-Needle-Retrieval-EN-100000_naive_average: 100
Single-Needle-Retrieval-ZH-100000_naive_average: 100
Single-Needle-Retrieval(S-RT)-200000_naive_average: 100
Single-Needle-Retrieval-EN-200000_naive_average: 100
Single-Needle-Retrieval-ZH-200000_naive_average: 100
longbench_naive_average: 46.19
longbench_zh_naive_average: 49.3
longbench_en_naive_average: 43.97
longbench_single-document-qa_score: 42.84
longbench_multi-document-qa_score: 41.25
longbench_summarization_score: 23.21
longbench_few-shot-learning_score: 61.67
longbench_synthetic-tasks_score: 60.05
longbench_code-completion_score: 52.09
internlm2_5-7b-chat-turbomind:
objective:
race-high_accuracy: 86.16
ARC-c_accuracy: 90.17
BoolQ_accuracy: 87.89
triviaqa_wiki_1shot_score: 64.91
nq_open_1shot_score: 22.69
mmmlu_lite_naive_average: 44.96
IFEval_Prompt-level-strict-accuracy: 58.04
drop_accuracy: 77.68
bbh_naive_average: 73.14
GPQA_diamond_accuracy: 31.06
hellaswag_accuracy: 94.79
TheoremQA_score: 22.25
musr_average_naive_average: 50.89
korbench_single_naive_average: 32.16
ARC_Prize_Public_Evaluation_accuracy: 0.02
gsm8k_accuracy: 86.73
GaokaoBench_weighted_average: 78.6
math_accuracy: 61
cmo_fib_accuracy: 11
aime2024_accuracy: 3.33
Mathbench_naive_average: 64.23
wikibench-wiki-single_choice_cncircular_perf_4: 31.32
cmmlu_naive_average: 74.3
mmlu_naive_average: 70.84
mmlu_pro_naive_average: 44.98
openai_humaneval_humaneval_pass@1: 69.8
sanitized_mbpp_score: 64.4
humanevalx_naive_average: 33.35
ds1000_naive_average: 14.15
lcb_code_generation_pass@1: 17.75
lcb_code_execution_pass@1: 32.57
lcb_test_output_pass@1: 26.13
bigcodebench_hard_instruct_pass@1: 3.38
bigcodebench_hard_complete_pass@1: 5.06
teval_naive_average: 80
SciCode_sub_accuracy: 5.56
qa_dingo_cn_score: 99.01
mmlu-stem_accuracy: 68.2
mmlu-social-science_accuracy: 75.8
mmlu-humanities_accuracy: 69.3
mmlu-other_accuracy: 71.3
cmmlu-stem_accuracy: 66.64
cmmlu-social-science_accuracy: 76
cmmlu-humanities_accuracy: 77.9
cmmlu-other_accuracy: 77.25
cmmlu-china-specific_accuracy: 73.6
mmlu_pro_biology_accuracy: 66.67
mmlu_pro_business_accuracy: 47.91
mmlu_pro_chemistry_accuracy: 35
mmlu_pro_computer_science_accuracy: 48.9
mmlu_pro_economics_accuracy: 55.87
mmlu_pro_engineering_accuracy: 29.62
mmlu_pro_health_accuracy: 45
mmlu_pro_history_accuracy: 40.8
mmlu_pro_law_accuracy: 25.79
mmlu_pro_math_accuracy: 53.48
mmlu_pro_philosophy_accuracy: 38.38
mmlu_pro_physics_accuracy: 37.79
mmlu_pro_psychology_accuracy: 58.39
mmlu_pro_other_accuracy: 46.27
humanevalx-python_pass@1: 53.66
humanevalx-cpp_pass@1: 22.56
humanevalx-go_pass@1: 0
humanevalx-js_pass@1: 54.88
ds1000_Pandas_accuracy: 10.65
ds1000_Numpy_accuracy: 3.63
ds1000_Tensorflow_accuracy: 13.33
ds1000_Scipy_accuracy: 8.96
ds1000_Sklearn_accuracy: 6.96
ds1000_Pytorch_accuracy: 6.62
ds1000_Matplotlib_accuracy: 49.35
openai_mmmlu_lite_AR-XY_accuracy: 17.19
openai_mmmlu_lite_BN-BD_accuracy: 26.78
openai_mmmlu_lite_DE-DE_accuracy: 51.27
openai_mmmlu_lite_ES-LA_accuracy: 56.94
openai_mmmlu_lite_FR-FR_accuracy: 58.22
openai_mmmlu_lite_HI-IN_accuracy: 30.75
openai_mmmlu_lite_ID-ID_accuracy: 50.6
openai_mmmlu_lite_IT-IT_accuracy: 50.6
openai_mmmlu_lite_JA-JP_accuracy: 51.13
openai_mmmlu_lite_KO-KR_accuracy: 45
openai_mmmlu_lite_PT-BR_accuracy: 57.68
openai_mmmlu_lite_SW-KE_accuracy: 32.56
openai_mmmlu_lite_YO-NG_accuracy: 32.42
openai_mmmlu_lite_ZH-CN_accuracy: 65.4
college_naive_average: 19.17
high_naive_average: 46.5
middle_naive_average: 61.34
primary_naive_average: 73.34
arithmetic_naive_average: 61.67
mathbench-a (average)_naive_average: 52.58
college_knowledge_naive_average: 67.1
high_knowledge_naive_average: 70
middle_knowledge_naive_average: 80
primary_knowledge_naive_average: 90.12
mathbench-t (average)_naive_average: 76
subjective:
alignment_bench_v1_1_总分: 5.68
alpaca_eval_total: 25.96
arenahard_score: 17.15
Followbench_naive_average: 0.81
CompassArena_naive_average: 39.49
FoFo_naive_average: 0.38
mtbench101_avg: 8.01
wildbench_average: -10.49
simpleqa_accuracy_given_attempted: 0.04
chinese_simpleqa_given_attempted_accuracy: 0.34
alignment_bench_v1_1_专业能力: 6.05
alignment_bench_v1_1_数学计算: 5.87
alignment_bench_v1_1_基本任务: 6.01
alignment_bench_v1_1_逻辑推理: 4.48
alignment_bench_v1_1_中文理解: 6.17
alignment_bench_v1_1_文本写作: 6.06
alignment_bench_v1_1_角色扮演: 6.3
alignment_bench_v1_1_综合问答: 6.45
alpaca_eval_helpful_base: 17.83
alpaca_eval_koala: 28.21
alpaca_eval_oasst: 23.4
alpaca_eval_selfinstruct: 30.95
alpaca_eval_vicuna: 25.00
compassarena_language_naive_average: 53.00
compassarena_knowledge_naive_average: 36
compassarena_reason_v2_naive_average: 35
compassarena_math_v2_naive_average: 16.07
compassarena_creationv2_zh_naive_average: 43.64
fofo_test_prompts_overall: 0.35
fofo_test_prompts_cn_overall: 0.41
followbench_llmeval_en_HSR_AVG: 0.73
followbench_llmeval_en_SSR_AVG: 0.88
followbench_llmeval_en_HSR_L1: 0.94
followbench_llmeval_en_HSR_L2: 0.77
followbench_llmeval_en_HSR_L3: 0.73
followbench_llmeval_en_HSR_L4: 0.68
followbench_llmeval_en_HSR_L5: 0.54
followbench_llmeval_en_SSR_L1: 0.94
followbench_llmeval_en_SSR_L2: 0.88
followbench_llmeval_en_SSR_L3: 0.87
followbench_llmeval_en_SSR_L4: 0.87
followbench_llmeval_en_SSR_L5: 0.85
simpleqa_f1: 0.04
internlm2_5-7b-chat-1m-turbomind:
long_context:
ruler_8k_naive_average: 88.53
ruler_32k_naive_average: 83.84
ruler_128k_naive_average: 70.94
NeedleBench-Overall-Score-8K_weighted_average: 91.89
NeedleBench-Overall-Score-32K_weighted_average: 91.42
NeedleBench-Overall-Score-128K_weighted_average: 88.57
longbench_naive_average: 46.44
longbench_zh_naive_average: 45.19
longbench_en_naive_average: 45.71
babilong_0k_naive_average: 79.3
babilong_4k_naive_average: 67
babilong_16k_naive_average: 52.7
babilong_32k_naive_average: 48.9
babilong_128k_naive_average: 40.8
babilong_256k_naive_average: 23.5
longbench_single-document-qa_score: 43.56
longbench_multi-document-qa_score: 46.24
longbench_summarization_score: 24.32
longbench_few-shot-learning_score: 51.67
longbench_synthetic-tasks_score: 66.83
longbench_code-completion_score: 45.99
qwen2.5-7b-instruct-turbomind:
objective:
race-high_accuracy: 84.99
ARC-c_accuracy: 92.2
BoolQ_accuracy: 86.7
triviaqa_wiki_1shot_score: 53.06
nq_open_1shot_score: 17.51
mmmlu_lite_naive_average: 54.96
IFEval_Prompt-level-strict-accuracy: 71.53
drop_accuracy: 80.07
bbh_naive_average: 68.81
GPQA_diamond_accuracy: 34.34
hellaswag_accuracy: 85.42
TheoremQA_score: 18.38
musr_average_naive_average: 43.44
korbench_single_naive_average: 39.44
ARC_Prize_Public_Evaluation_accuracy: 0
gsm8k_accuracy: 92.57
GaokaoBench_weighted_average: 80.14
math_accuracy: 73.58
cmo_fib_accuracy: 25
aime2024_accuracy: 16.67
Mathbench_naive_average: 77.33
wikibench-wiki-single_choice_cncircular_perf_4: 34.9
cmmlu_naive_average: 75.97
mmlu_naive_average: 76.01
mmlu_pro_naive_average: 56.12
openai_humaneval_humaneval_pass@1: 83.54
sanitized_mbpp_score: 74.71
humanevalx_naive_average: 48.29
ds1000_naive_average: 18.66
lcb_code_generation_pass@1: 39.5
lcb_code_execution_pass@1: 42.38
lcb_test_output_pass@1: 50.68
bigcodebench_hard_instruct_pass@1: 16.22
bigcodebench_hard_complete_pass@1: 11.49
teval_naive_average: 79.72
SciCode_sub_accuracy: 10.76
qa_dingo_cn_score: 99.01
mmlu_accuracy: 76.01
mmlu-stem_accuracy: 77.59
mmlu-social-science_accuracy: 79.02
mmlu-humanities_accuracy: 72.07
mmlu-other_accuracy: 74.86
cmmlu_accuracy: 75.97
cmmlu-stem_accuracy: 73.09
cmmlu-social-science_accuracy: 75.95
cmmlu-humanities_accuracy: 76.53
cmmlu-other_accuracy: 78.79
cmmlu-china-specific_accuracy: 73.17
mmlu_pro_accuracy: 56.12
mmlu_pro_biology_accuracy: 71.41
mmlu_pro_business_accuracy: 67.68
mmlu_pro_chemistry_accuracy: 54.59
mmlu_pro_computer_science_accuracy: 58.29
mmlu_pro_economics_accuracy: 66.82
mmlu_pro_engineering_accuracy: 42.41
mmlu_pro_health_accuracy: 55.87
mmlu_pro_history_accuracy: 46.46
mmlu_pro_law_accuracy: 28.97
mmlu_pro_math_accuracy: 73.13
mmlu_pro_philosophy_accuracy: 44.89
mmlu_pro_physics_accuracy: 58.43
mmlu_pro_psychology_accuracy: 63.16
mmlu_pro_other_accuracy: 53.57
humanevalx-python_pass@1: 50
humanevalx-cpp_pass@1: 42.07
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 53.05
humanevalx-js_pass@1: 75
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 8.18
ds1000_Tensorflow_accuracy: 17.78
ds1000_Scipy_accuracy: 15.09
ds1000_Sklearn_accuracy: 10.43
ds1000_Pytorch_accuracy: 4.41
ds1000_Matplotlib_accuracy: 60.65
mmmlu_lite_accuracy: 54.96
openai_mmmlu_lite_AR-XY_accuracy: 42.32
openai_mmmlu_lite_BN-BD_accuracy: 42.25
openai_mmmlu_lite_DE-DE_accuracy: 59.93
openai_mmmlu_lite_ES-LA_accuracy: 66.53
openai_mmmlu_lite_FR-FR_accuracy: 66.88
openai_mmmlu_lite_HI-IN_accuracy: 49.26
openai_mmmlu_lite_ID-ID_accuracy: 61.26
openai_mmmlu_lite_IT-IT_accuracy: 65.47
openai_mmmlu_lite_JA-JP_accuracy: 61.54
openai_mmmlu_lite_KO-KR_accuracy: 60.28
openai_mmmlu_lite_PT-BR_accuracy: 55.51
openai_mmmlu_lite_SW-KE_accuracy: 36.42
openai_mmmlu_lite_YO-NG_accuracy: 32.14
openai_mmmlu_lite_ZH-CN_accuracy: 69.61
college_naive_average: 44.33
high_naive_average: 59
middle_naive_average: 78
primary_naive_average: 85.67
arithmetic_naive_average: 75.67
mathbench-a (average)_naive_average: 69.27
college_knowledge_naive_average: 83.86
high_knowledge_naive_average: 80.29
middle_knowledge_naive_average: 84.26
primary_knowledge_naive_average: 93.16
mathbench-t (average)_naive_average: 85.39
internlm2_5-7b-chat-pytorch:
objective:
race-high_accuracy: 86.39
ARC-c_accuracy: 90.51
BoolQ_accuracy: 88.01
triviaqa_wiki_1shot_score: 64.77
nq_open_1shot_score: 22.71
mmmlu_lite_naive_average: 45.02
IFEval_Prompt-level-strict-accuracy: 56.56
drop_accuracy: 75.46
bbh_naive_average: 73.34
GPQA_diamond_accuracy: 32.83
hellaswag_accuracy: 94.81
TheoremQA_score: 23.88
musr_average_naive_average: 51.31
korbench_single_naive_average: 32
ARC_Prize_Public_Evaluation_accuracy: 0.01
gsm8k_accuracy: 86.96
GaokaoBench_weighted_average: 78.05
math_accuracy: 60.34
cmo_fib_accuracy: 12.98
aime2024_accuracy: 3.33
Mathbench_naive_average: 64.82
wikibench-wiki-single_choice_cncircular_perf_4: 31.7
cmmlu_naive_average: 74.24
mmlu_naive_average: 70.2
mmlu_pro_naive_average: 45.39
openai_humaneval_humaneval_pass@1: 70.12
sanitized_mbpp_score: 64.59
humanevalx_naive_average: 38.78
ds1000_naive_average: 14.19
lcb_code_generation_pass@1: 16.5
lcb_code_execution_pass@1: 33.82
lcb_test_output_pass@1: 22.62
bigcodebench_hard_instruct_pass@1: 6.08
bigcodebench_hard_complete_pass@1: 6.76
teval_naive_average: 79.73
SciCode_sub_accuracy: 3.47
qa_dingo_cn_score: 100
mmlu_accuracy: 70.2
mmlu-stem_accuracy: 67.73
mmlu-social-science_accuracy: 75.49
mmlu-humanities_accuracy: 68.56
mmlu-other_accuracy: 70.58
cmmlu_accuracy: 74.24
cmmlu-stem_accuracy: 66.7
cmmlu-social-science_accuracy: 75.88
cmmlu-humanities_accuracy: 77.56
cmmlu-other_accuracy: 77.52
cmmlu-china-specific_accuracy: 73.46
mmlu_pro_accuracy: 45.39
mmlu_pro_biology_accuracy: 65.83
mmlu_pro_business_accuracy: 51.96
mmlu_pro_chemistry_accuracy: 36.84
mmlu_pro_computer_science_accuracy: 48.29
mmlu_pro_economics_accuracy: 56.16
mmlu_pro_engineering_accuracy: 29.1
mmlu_pro_health_accuracy: 44.5
mmlu_pro_history_accuracy: 42.26
mmlu_pro_law_accuracy: 24.98
mmlu_pro_math_accuracy: 54.85
mmlu_pro_philosophy_accuracy: 39.28
mmlu_pro_physics_accuracy: 37.41
mmlu_pro_psychology_accuracy: 58.27
mmlu_pro_other_accuracy: 45.78
humanevalx-python_pass@1: 56.1
humanevalx-cpp_pass@1: 20.73
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 59.15
humanevalx-js_pass@1: 57.93
ds1000_Pandas_accuracy: 8.93
ds1000_Numpy_accuracy: 4.09
ds1000_Tensorflow_accuracy: 11.11
ds1000_Scipy_accuracy: 7.55
ds1000_Sklearn_accuracy: 7.83
ds1000_Pytorch_accuracy: 8.82
ds1000_Matplotlib_accuracy: 50.97
mmmlu_lite_accuracy: 45.02
openai_mmmlu_lite_AR-XY_accuracy: 18.6
openai_mmmlu_lite_BN-BD_accuracy: 27.58
openai_mmmlu_lite_DE-DE_accuracy: 51.23
openai_mmmlu_lite_ES-LA_accuracy: 56.63
openai_mmmlu_lite_FR-FR_accuracy: 58.11
openai_mmmlu_lite_HI-IN_accuracy: 33.82
openai_mmmlu_lite_ID-ID_accuracy: 50.39
openai_mmmlu_lite_IT-IT_accuracy: 50.39
openai_mmmlu_lite_JA-JP_accuracy: 50.95
openai_mmmlu_lite_KO-KR_accuracy: 45.05
openai_mmmlu_lite_PT-BR_accuracy: 57.89
openai_mmmlu_lite_SW-KE_accuracy: 32.14
openai_mmmlu_lite_YO-NG_accuracy: 32.14
openai_mmmlu_lite_ZH-CN_accuracy: 65.33
college_naive_average: 21
high_naive_average: 47
middle_naive_average: 59.67
primary_naive_average: 72.33
arithmetic_naive_average: 62
mathbench-a (average)_naive_average: 53.13
college_knowledge_naive_average: 68.99
high_knowledge_naive_average: 70.06
middle_knowledge_naive_average: 78.53
primary_knowledge_naive_average: 88.49
mathbench-t (average)_naive_average: 76.51
qwen2.5-7b-instruct-pytorch:
objective:
race-high_accuracy: 85.16
ARC-c_accuracy: 90.85
BoolQ_accuracy: 86.61
triviaqa_wiki_1shot_score: 52.96
nq_open_1shot_score: 17.62
mmmlu_lite_naive_average: 54.7
IFEval_Prompt-level-strict-accuracy: 71.35
drop_accuracy: 80.23
bbh_naive_average: 68.88
GPQA_diamond_accuracy: 36.36
hellaswag_accuracy: 85.49
TheoremQA_score: 18.38
musr_average_naive_average: 43.3
korbench_single_naive_average: 39.44
ARC_Prize_Public_Evaluation_accuracy: 0
gsm8k_accuracy: 91.66
GaokaoBench_weighted_average: 80.02
math_accuracy: 73.74
cmo_fib_accuracy: 22.60
aime2024_accuracy: 13.33
Mathbench_naive_average: 77.08
wikibench-wiki-single_choice_cncircular_perf_4: 34
cmmlu_naive_average: 75.9
mmlu_naive_average: 76.27
mmlu_pro_naive_average: 56.14
openai_humaneval_humaneval_pass@1: 84.76
sanitized_mbpp_score: 74.71
humanevalx_naive_average: 48.17
ds1000_naive_average: 18.57
lcb_code_generation_pass@1: 38.75
lcb_code_execution_pass@1: 42.38
lcb_test_output_pass@1: 50.45
bigcodebench_hard_instruct_pass@1: 16.89
bigcodebench_hard_complete_pass@1: 12.16
teval_naive_average: 79.46
SciCode_sub_accuracy: 10.42
qa_dingo_cn_score: 100
mmlu_accuracy: 76.27
mmlu-stem_accuracy: 77.75
mmlu-social-science_accuracy: 78.65
mmlu-humanities_accuracy: 73.12
mmlu-other_accuracy: 75.05
cmmlu_accuracy: 75.9
cmmlu-stem_accuracy: 73.41
cmmlu-social-science_accuracy: 75.97
cmmlu-humanities_accuracy: 76.42
cmmlu-other_accuracy: 78.15
cmmlu-china-specific_accuracy: 73.27
mmlu_pro_accuracy: 56.14
mmlu_pro_biology_accuracy: 72.25
mmlu_pro_business_accuracy: 66.16
mmlu_pro_chemistry_accuracy: 55.65
mmlu_pro_computer_science_accuracy: 60.24
mmlu_pro_economics_accuracy: 66.82
mmlu_pro_engineering_accuracy: 41.38
mmlu_pro_health_accuracy: 54.89
mmlu_pro_history_accuracy: 46.46
mmlu_pro_law_accuracy: 29.06
mmlu_pro_math_accuracy: 73.58
mmlu_pro_philosophy_accuracy: 44.89
mmlu_pro_physics_accuracy: 60.05
mmlu_pro_psychology_accuracy: 61.9
mmlu_pro_other_accuracy: 52.6
humanevalx-python_pass@1: 51.83
humanevalx-cpp_pass@1: 42.68
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 73.78
humanevalx-js_pass@1: 72.56
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 8.64
ds1000_Tensorflow_accuracy: 17.78
ds1000_Scipy_accuracy: 15.09
ds1000_Sklearn_accuracy: 8.7
ds1000_Pytorch_accuracy: 4.41
ds1000_Matplotlib_accuracy: 61.29
mmmlu_lite_accuracy: 54.7
openai_mmmlu_lite_AR-XY_accuracy: 42.32
openai_mmmlu_lite_BN-BD_accuracy: 42.18
openai_mmmlu_lite_DE-DE_accuracy: 60
openai_mmmlu_lite_ES-LA_accuracy: 66.18
openai_mmmlu_lite_FR-FR_accuracy: 66.88
openai_mmmlu_lite_HI-IN_accuracy: 48.63
openai_mmmlu_lite_ID-ID_accuracy: 61.26
openai_mmmlu_lite_IT-IT_accuracy: 65.26
openai_mmmlu_lite_JA-JP_accuracy: 60.7
openai_mmmlu_lite_KO-KR_accuracy: 60.63
openai_mmmlu_lite_PT-BR_accuracy: 54.46
openai_mmmlu_lite_SW-KE_accuracy: 36
openai_mmmlu_lite_YO-NG_accuracy: 31.86
openai_mmmlu_lite_ZH-CN_accuracy: 69.4
college_naive_average: 48.33
high_naive_average: 59.33
middle_naive_average: 76.67
primary_naive_average: 86.67
arithmetic_naive_average: 74.33
mathbench-a (average)_naive_average: 69.07
college_knowledge_naive_average: 83.54
high_knowledge_naive_average: 80.82
middle_knowledge_naive_average: 83.79
primary_knowledge_naive_average: 92.22
mathbench-t (average)_naive_average: 85.1
internlm3-8b-instruct-turbomind:
objective:
race-high_accuracy: 89.22
ARC-c_accuracy: 92.54
BoolQ_accuracy: 86.45
triviaqa_wiki_1shot_score: 60.72
nq_open_1shot_score: 20.25
mmmlu_lite_naive_average: 41.82
IFEval_Prompt-level-strict-accuracy: 77.45
drop_accuracy: 83.27
bbh_naive_average: 55.22
GPQA_diamond_accuracy: 37.88
hellaswag_accuracy: 91.28
TheoremQA_score: 20.12
musr_average_naive_average: 36.86
korbench_single_naive_average: 41.2
ARC_Prize_Public_Evaluation_accuracy: 0.06
gsm8k_accuracy: 91.28
GaokaoBench_weighted_average: 86.59
math_accuracy: 76.96
cmo_fib_accuracy: 38.46
aime2024_accuracy: 13.33
Mathbench_naive_average: 78.96
wikibench-wiki-single_choice_cncircular_perf_4: 37.45
cmmlu_naive_average: 83.33
mmlu_naive_average: 76.21
mmlu_pro_naive_average: 57.96
openai_humaneval_humaneval_pass@1: 81.71
sanitized_mbpp_score: 69.65
humanevalx_naive_average: 40.73
ds1000_naive_average: 27.23
lcb_code_generation_pass@1: 34.75
lcb_code_execution_pass@1: 49.9
lcb_test_output_pass@1: 48.19
bigcodebench_hard_instruct_pass@1: 13.51
bigcodebench_hard_complete_pass@1: 15.54
teval_naive_average: 82.86
SciCode_sub_accuracy: 11.11
qa_dingo_cn_score: 100
mmlu_accuracy: 76.21
mmlu-stem_accuracy: 77.7
mmlu-social-science_accuracy: 80.98
mmlu-humanities_accuracy: 70.83
mmlu-other_accuracy: 75.01
cmmlu_accuracy: 83.33
cmmlu-stem_accuracy: 79.66
cmmlu-social-science_accuracy: 83.39
cmmlu-humanities_accuracy: 84.73
cmmlu-other_accuracy: 86.2
cmmlu-china-specific_accuracy: 81.77
mmlu_pro_accuracy: 57.96
mmlu_pro_biology_accuracy: 75.45
mmlu_pro_business_accuracy: 64.64
mmlu_pro_chemistry_accuracy: 59.81
mmlu_pro_computer_science_accuracy: 60.24
mmlu_pro_economics_accuracy: 68.6
mmlu_pro_engineering_accuracy: 44.79
mmlu_pro_health_accuracy: 58.31
mmlu_pro_history_accuracy: 49.87
mmlu_pro_law_accuracy: 32.43
mmlu_pro_math_accuracy: 70.17
mmlu_pro_philosophy_accuracy: 46.89
mmlu_pro_physics_accuracy: 59.58
mmlu_pro_psychology_accuracy: 66.29
mmlu_pro_other_accuracy: 54.33
humanevalx-python_pass@1: 43.9
humanevalx-cpp_pass@1: 20.12
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 40.85
humanevalx-js_pass@1: 65.24
ds1000_Pandas_accuracy: 16.49
ds1000_Numpy_accuracy: 34.09
ds1000_Tensorflow_accuracy: 26.67
ds1000_Scipy_accuracy: 17.92
ds1000_Sklearn_accuracy: 20.87
ds1000_Pytorch_accuracy: 19.12
ds1000_Matplotlib_accuracy: 55.48
mmmlu_lite_accuracy: 41.82
openai_mmmlu_lite_AR-XY_accuracy: 32.56
openai_mmmlu_lite_BN-BD_accuracy: 4.56
openai_mmmlu_lite_DE-DE_accuracy: 24.91
openai_mmmlu_lite_ES-LA_accuracy: 51.09
openai_mmmlu_lite_FR-FR_accuracy: 61.68
openai_mmmlu_lite_HI-IN_accuracy: 24.98
openai_mmmlu_lite_ID-ID_accuracy: 44.56
openai_mmmlu_lite_IT-IT_accuracy: 52.35
openai_mmmlu_lite_JA-JP_accuracy: 51.02
openai_mmmlu_lite_KO-KR_accuracy: 47.93
openai_mmmlu_lite_PT-BR_accuracy: 53.89
openai_mmmlu_lite_SW-KE_accuracy: 33.47
openai_mmmlu_lite_YO-NG_accuracy: 33.47
openai_mmmlu_lite_ZH-CN_accuracy: 69.05
college_naive_average: 45.67
high_naive_average: 64.67
middle_naive_average: 82.33
primary_naive_average: 90.33
arithmetic_naive_average: 74
mathbench-a (average)_naive_average: 71.4
college_knowledge_naive_average: 85.28
high_knowledge_naive_average: 79.43
middle_knowledge_naive_average: 87.9
primary_knowledge_naive_average: 93.42
mathbench-t (average)_naive_average: 86.51
internlm3-8b-instruct-pytorch:
objective:
race-high_accuracy: 89.02
ARC-c_accuracy: 93.56
BoolQ_accuracy: 86.67
triviaqa_wiki_1shot_score: 60.54
nq_open_1shot_score: 20.3
mmmlu_lite_naive_average: 42.6
IFEval_Prompt-level-strict-accuracy: 79.11
drop_accuracy: 83.32
bbh_naive_average: 54.76
GPQA_diamond_accuracy: 33.84
hellaswag_accuracy: 91.31
TheoremQA_score: 18
musr_average_naive_average: 36.62
korbench_single_naive_average: 41.84
ARC_Prize_Public_Evaluation_accuracy: 0.06
gsm8k_accuracy: 90.67
GaokaoBench_weighted_average: 86.27
math_accuracy: 76.68
cmo_fib_accuracy: 33.65
aime2024_accuracy: 10
Mathbench_naive_average: 78.92
wikibench-wiki-single_choice_cncircular_perf_4: 37.35
cmmlu_naive_average: 83.11
mmlu_naive_average: 76.23
mmlu_pro_naive_average: 58.16
openai_humaneval_humaneval_pass@1: 82.32
sanitized_mbpp_score: 70.04
humanevalx_naive_average: 25.49
ds1000_naive_average: 27.84
lcb_code_generation_pass@1: 34.5
lcb_code_execution_pass@1: 48.02
lcb_test_output_pass@1: 47.74
bigcodebench_hard_instruct_pass@1: 12.84
bigcodebench_hard_complete_pass@1: 15.54
teval_naive_average: 82.86
SciCode_sub_accuracy: 9.38
qa_dingo_cn_score: 100
mmlu_accuracy: 76.23
mmlu-stem_accuracy: 78.08
mmlu-social-science_accuracy: 80.31
mmlu-humanities_accuracy: 71.38
mmlu-other_accuracy: 74.63
cmmlu_accuracy: 83.11
cmmlu-stem_accuracy: 79.42
cmmlu-social-science_accuracy: 83.34
cmmlu-humanities_accuracy: 83.95
cmmlu-other_accuracy: 86.22
cmmlu-china-specific_accuracy: 81.5
mmlu_pro_accuracy: 58.16
mmlu_pro_biology_accuracy: 74.62
mmlu_pro_business_accuracy: 65.02
mmlu_pro_chemistry_accuracy: 60.69
mmlu_pro_computer_science_accuracy: 61.46
mmlu_pro_economics_accuracy: 68.25
mmlu_pro_engineering_accuracy: 45.3
mmlu_pro_health_accuracy: 60.15
mmlu_pro_history_accuracy: 50.66
mmlu_pro_law_accuracy: 31.7
mmlu_pro_math_accuracy: 70.32
mmlu_pro_philosophy_accuracy: 47.7
mmlu_pro_physics_accuracy: 59.51
mmlu_pro_psychology_accuracy: 65.41
mmlu_pro_other_accuracy: 53.46
humanevalx-python_pass@1: 42.68
humanevalx-cpp_pass@1: 19.51
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 0.00
humanevalx-js_pass@1: 64.02
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 35
ds1000_Tensorflow_accuracy: 24.44
ds1000_Scipy_accuracy: 20.75
ds1000_Sklearn_accuracy: 21.74
ds1000_Pytorch_accuracy: 22.06
ds1000_Matplotlib_accuracy: 56.77
mmmlu_lite_accuracy: 42.6
openai_mmmlu_lite_AR-XY_accuracy: 32.84
openai_mmmlu_lite_BN-BD_accuracy: 10.46
openai_mmmlu_lite_DE-DE_accuracy: 24.56
openai_mmmlu_lite_ES-LA_accuracy: 50.95
openai_mmmlu_lite_FR-FR_accuracy: 61.05
openai_mmmlu_lite_HI-IN_accuracy: 30.6
openai_mmmlu_lite_ID-ID_accuracy: 45.89
openai_mmmlu_lite_IT-IT_accuracy: 51.79
openai_mmmlu_lite_JA-JP_accuracy: 51.65
openai_mmmlu_lite_KO-KR_accuracy: 48.77
openai_mmmlu_lite_PT-BR_accuracy: 52.7
openai_mmmlu_lite_SW-KE_accuracy: 32.91
openai_mmmlu_lite_YO-NG_accuracy: 32.84
openai_mmmlu_lite_ZH-CN_accuracy: 69.33
college_naive_average: 47
high_naive_average: 66.67
middle_naive_average: 81.67
primary_naive_average: 89.33
arithmetic_naive_average: 73.67
mathbench-a (average)_naive_average: 71.67
college_knowledge_naive_average: 82.91
high_knowledge_naive_average: 79.86
middle_knowledge_naive_average: 88.92
primary_knowledge_naive_average: 92.96
mathbench-t (average)_naive_average: 86.16

View File

@ -0,0 +1,432 @@
chat:
glm-4-9b-chat-hf:
gsm8k_accuracy: 56.25
race-high_accuracy: 84.38
glm-4-9b-chat-turbomind:
gsm8k_accuracy: 71.88
race-high_accuracy: 90.62
glm-4-9b-chat-vllm:
gsm8k_accuracy: 71.88
race-high_accuracy: 90.62
deepseek-7b-chat-hf:
gsm8k_accuracy: 46.88
race-high_accuracy: 81.25
deepseek-r1-distill-llama-8b-turbomind:
gsm8k_accuracy: 34.38
race-high_accuracy: 81.25
deepseek-r1-distill-qwen-1_5b-turbomind:
gsm8k_accuracy: 28.12
race-high_accuracy: 53.12
deepseek-7b-chat-vllm:
gsm8k_accuracy: 56.25
race-high_accuracy: 78.12
gemma2-2b-it-hf:
gsm8k_accuracy: 50
race-high_accuracy: 75
gemma2-9b-it-hf:
gsm8k_accuracy: 68.75
race-high_accuracy: 84.38
gemma-2b-it-hf:
gsm8k_accuracy: 3.12
race-high_accuracy: 40.62
gemma-7b-it-hf:
gsm8k_accuracy: 40.62
race-high_accuracy: 68.75
gemma-2-9b-it-turbomind:
gsm8k_accuracy: 68.75
race-high_accuracy: 84.38
gemma-2-27b-it-turbomind:
gsm8k_accuracy: 78.12
race-high_accuracy: 93.75
gemma-7b-it-vllm:
gsm8k_accuracy: 28.12
race-high_accuracy: 68.75
internlm2_5-7b-chat-hf:
gsm8k_accuracy: 84.38
race-high_accuracy: 90.62
internlm3-8b-instruct-hf:
gsm8k_accuracy: 65.62
race-high_accuracy: 87.5
internlm2_5-7b-chat-turbomind:
gsm8k_accuracy: 81.25
race-high_accuracy: 90.62
internlm2-chat-1.8b-turbomind:
gsm8k_accuracy: 25.00
race-high_accuracy: 84.38
internlm2-chat-1.8b-sft-turbomind:
gsm8k_accuracy: 34.38
race-high_accuracy: 84.38
internlm2-chat-7b-lmdeploy:
gsm8k_accuracy: 59.38
race-high_accuracy: 87.50
internlm2-chat-7b-sft-turbomind:
gsm8k_accuracy: 56.25
race-high_accuracy: 87.50
internlm3-8b-instruct-turbomind:
gsm8k_accuracy: 65.62
race-high_accuracy: 87.5
internlm2-chat-7b-vllm:
gsm8k_accuracy: 53.12
race-high_accuracy: 87.50
llama-3_1-8b-instruct-hf:
gsm8k_accuracy: 84.38
race-high_accuracy: 90.62
llama-3_2-3b-instruct-hf:
gsm8k_accuracy: 71.88
race-high_accuracy: 81.25
llama-3-8b-instruct-hf:
gsm8k_accuracy: 68.75
race-high_accuracy: 87.5
llama-2-7b-chat-turbomind:
gsm8k_accuracy: 18.75
race-high_accuracy: 46.88
llama-3_1-8b-instruct-turbomind:
gsm8k_accuracy: 84.38
race-high_accuracy: 90.62
llama-3_2-3b-instruct-turbomind:
gsm8k_accuracy: 65.62
race-high_accuracy: 81.25
llama-3-8b-instruct-turbomind:
gsm8k_accuracy: 65.62
race-high_accuracy: 84.38
mistral-7b-instruct-v0.2-hf:
gsm8k_accuracy: 40.62
race-high_accuracy: 75
mistral-7b-instruct-v0.3-hf:
gsm8k_accuracy: 40.62
race-high_accuracy: 75
mistral-nemo-instruct-2407-hf:
gsm8k_accuracy: 75
race-high_accuracy: 81.25
mistral-nemo-instruct-2407-turbomind:
gsm8k_accuracy: 71.88
race-high_accuracy: 75
mistral-7b-instruct-v0.1-vllm:
gsm8k_accuracy: 34.38
race-high_accuracy: 65.62
mistral-7b-instruct-v0.2-vllm:
gsm8k_accuracy: 28.12
race-high_accuracy: 78.12
qwen2.5-0.5b-instruct-hf:
gsm8k_accuracy: 34.38
race-high_accuracy: 46.88
qwen2.5-3b-instruct-hf :
gsm8k_accuracy: 53.12
race-high_accuracy: 90.62
qwen2.5-0.5b-instruct-turbomind:
gsm8k_accuracy: 28.12
race-high_accuracy: 43.75
qwen2.5-3b-instruct-turbomind:
gsm8k_accuracy: 56.25
race-high_accuracy: 90.62
qwen1.5-0.5b-chat-hf:
gsm8k_accuracy: 0
race-high_accuracy: 53.12
qwen2-1.5b-instruct-hf:
gsm8k_accuracy: 62.5
race-high_accuracy: 84.38
qwen2-7b-instruct-hf:
gsm8k_accuracy: 68.75
race-high_accuracy: 90.62
qwen2-1.5b-instruct-turbomind:
gsm8k_accuracy: 56.25
race-high_accuracy: 84.38
qwen2-7b-instruct-turbomind:
gsm8k_accuracy: 75.00
race-high_accuracy: 87.50
qwen1.5-0.5b-chat-vllm:
gsm8k_accuracy: 6.25
race-high_accuracy: 53.12
yi-1.5-6b-chat-hf:
gsm8k_accuracy: 65.62
race-high_accuracy: 84.38
yi-1.5-9b-chat-hf:
gsm8k_accuracy: 75
race-high_accuracy: 93.75
yi-1.5-6b-chat-turbomind:
gsm8k_accuracy: 59.38
race-high_accuracy: 84.38
yi-1.5-9b-chat-turbomind:
gsm8k_accuracy: 78.12
race-high_accuracy: 93.75
deepseek-v2_lite-chat-turbomind:
gsm8k_accuracy: 43.75
race-high_accuracy: 71.88
gemma2-27b-it-hf:
gsm8k_accuracy: 71.88
race-high_accuracy: 93.75
internlm2_5-20b-chat-hf:
gsm8k_accuracy: 84.38
race-high_accuracy: 87.5
internlm2_5-20b-chat-turbomind:
gsm8k_accuracy: 87.50
race-high_accuracy: 87.5
mistral-small-instruct-2409-hf:
gsm8k_accuracy: 81.25
race-high_accuracy: 87.50
mistral-small-instruct-2409-turbomind:
gsm8k_accuracy: 78.12
race-high_accuracy: 87.50
phi-4:
gsm8k_accuracy: 81.25
race-high_accuracy: 87.50
qwen2.5-14b-instruct-hf:
gsm8k_accuracy: 71.88
race-high_accuracy: 96.88
qwen2.5-14b-instruct-turbomind:
gsm8k_accuracy: 71.88
race-high_accuracy: 96.88
yi-1.5-34b-chat-turbomind:
gsm8k_accuracy: 71.88
race-high_accuracy: 93.75
deepseek-67b-chat-turbomind:
gsm8k_accuracy: 71.88
race-high_accuracy: 75.00
deepseek-r1-distill-qwen-32b-turbomind:
gsm8k_accuracy: 31.25
race-high_accuracy: 90.62
llama-3_3-70b-instruct-turbomind:
gsm8k_accuracy: 93.75
race-high_accuracy: 87.5
mixtral-large-instruct-2411-turbomind:
gsm8k_accuracy: 87.50
race-high_accuracy: 93.75
nvidia-3_1-Nemotron-70b-instruct-HF-turbomind:
gsm8k_accuracy: 90.62
race-high_accuracy: 53.12
qwen2.5-72b-instruct-turbomind:
gsm8k_accuracy: 78.12
race-high_accuracy: 90.62
deepseek-r1-distill-llama-70b-turbomind:
gsm8k_accuracy: 50.00
race-high_accuracy: 87.50
deepseek-v2_5-1210-turbomind:
gsm8k_accuracy: 90.62
race-high_accuracy: 84.38
mixtral-8x22b-instruct-v0.1-turbomind:
gsm8k_accuracy: 75.00
race-high_accuracy: 78.12
mixtral-8x22b-instruct-v0.1-vllm:
gsm8k_accuracy: 78.12
race-high_accuracy: 78.12
base:
glm-4-9b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 28.12
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
deepseek-7b-base-hf:
gsm8k_accuracy: 25
GPQA_diamond_accuracy: 0
race-high_accuracy: 46.88
winogrande_accuracy: 71.88
deepseek-7b-base-turbomind:
gsm8k_accuracy: 18.75
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 50.00
winogrande_accuracy: 84.38
deepseek-moe-16b-base-vllm:
gsm8k_accuracy: 25.00
GPQA_diamond_accuracy: 0
race-high_accuracy: 25
winogrande_accuracy: 68.75
gemma2-2b-hf:
gsm8k_accuracy: 31.25
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 56.25
winogrande_accuracy: 75.00
gemma2-9b-hf:
gsm8k_accuracy: 75.00
GPQA_diamond_accuracy: 0
race-high_accuracy: 84.38
winogrande_accuracy: 81.25
gemma-2b-hf:
gsm8k_accuracy: 21.88
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 21.88
winogrande_accuracy: 53.12
gemma-7b-hf:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 65.62
winogrande_accuracy: 71.88
gemma-2-9b-turbomind:
gsm8k_accuracy: 68.75
GPQA_diamond_accuracy: 0
race-high_accuracy: 84.38
winogrande_accuracy: 81.25
gemma-2b-vllm:
gsm8k_accuracy: 15.62
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 28.12
winogrande_accuracy: 68.75
gemma-7b-vllm:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 6.25
race-high_accuracy: 81.25
winogrande_accuracy: 81.25
internlm2_5-7b-hf:
gsm8k_accuracy: 37.5
GPQA_diamond_accuracy: 25
race-high_accuracy: 93.75
winogrande_accuracy: 71.88
internlm2-7b-hf:
gsm8k_accuracy: 53.12
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 62.5
winogrande_accuracy: 78.12
internlm2-1.8b-turbomind:
gsm8k_accuracy: 12.50
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 71.88
winogrande_accuracy: 75
internlm2_5-7b-turbomind:
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75
winogrande_accuracy: 87.5
internlm2-7b-turbomind:
gsm8k_accuracy: 53.12
GPQA_diamond_accuracy: 25.00
race-high_accuracy: 78.12
winogrande_accuracy: 71.88
internlm2-base-7b-turbomind:
gsm8k_accuracy: 25.00
GPQA_diamond_accuracy: 34.38
race-high_accuracy: 71.88
winogrande_accuracy: 62.50
llama-2-7b-hf:
gsm8k_accuracy: 21.88
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 40.62
winogrande_accuracy: 71.88
llama-3_1-8b-hf:
gsm8k_accuracy: 78.12
GPQA_diamond_accuracy: 25
race-high_accuracy: 90.62
winogrande_accuracy: 62.5
llama-3-8b-hf:
gsm8k_accuracy: 46.88
GPQA_diamond_accuracy: 6.25
race-high_accuracy: 65.62
winogrande_accuracy: 65.62
llama-3.1-8b-turbomind:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 78.12
winogrande_accuracy: 78.12
llama-3-8b-turbomind:
gsm8k_accuracy: 46.88
GPQA_diamond_accuracy: 12.50
race-high_accuracy: 65.62
winogrande_accuracy: 81.25
mistral-7b-v0.3-hf:
gsm8k_accuracy: 31.25
GPQA_diamond_accuracy: 6.25
race-high_accuracy: 62.5
winogrande_accuracy: 59.38
qwen2.5-7b-hf:
gsm8k_accuracy: 81.25
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 87.5
winogrande_accuracy: 71.88
qwen2.5-1.5b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 78.12
winogrande_accuracy: 71.88
qwen2.5-7b-turbomind:
gsm8k_accuracy: 78.12
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 87.5
winogrande_accuracy: 75.00
qwen1.5-moe-a2.7b-hf:
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 84.38
winogrande_accuracy: 75
qwen2-0.5b-hf:
gsm8k_accuracy: 25
GPQA_diamond_accuracy: 0
race-high_accuracy: 40.62
winogrande_accuracy: 62.5
qwen2-1.5b-hf:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 81.25
winogrande_accuracy: 62.5
qwen2-7b-hf:
gsm8k_accuracy: 68.75
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 87.5
winogrande_accuracy: 68.75
qwen2-1.5b-turbomind:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 12.50
race-high_accuracy: 81.25
winogrande_accuracy: 75
qwen2-7b-turbomind:
gsm8k_accuracy: 65.62
GPQA_diamond_accuracy: 12.5
race-high_accuracy: 87.5
winogrande_accuracy: 75
qwen1.5-0.5b-vllm:
gsm8k_accuracy: 9.38
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 56.25
winogrande_accuracy: 59.38
yi-1.5-6b-hf:
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 87.5
winogrande_accuracy: 62.5
yi-1.5-9b-hf:
gsm8k_accuracy: 75
GPQA_diamond_accuracy: 40.62
race-high_accuracy: 87.5
winogrande_accuracy: 59.38
yi-1.5-9b-turbomind:
gsm8k_accuracy: 75.00
GPQA_diamond_accuracy: 40.62
race-high_accuracy: 87.5
winogrande_accuracy: 65.62
internlm2-20b-turbomind:
gsm8k_accuracy: 71.88
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 68.75
winogrande_accuracy: 81.25
qwen2.5-14b-hf:
gsm8k_accuracy: 75
GPQA_diamond_accuracy: 37.5
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
qwen2.5-32b-hf:
gsm8k_accuracy: 87.5
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75
winogrande_accuracy: 78.12
qwen2.5-32b-turbomind:
gsm8k_accuracy: 90.62
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75
winogrande_accuracy: 81.25
deepseek-67b-base-turbomind:
gsm8k_accuracy: 62.50
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 78.12
winogrande_accuracy: 81.25
llama-3-70b-turbomind:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 15.62
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
qwen2.5-72b-turbomind:
gsm8k_accuracy: 84.38
GPQA_diamond_accuracy: 40.62
race-high_accuracy: 93.75
winogrande_accuracy: 87.5
deepseek-v2-turbomind:
gsm8k_accuracy: 65.62
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 93.75
winogrande_accuracy: 81.25

View File

@ -2,74 +2,347 @@ name: daily_run_test
on:
workflow_dispatch:
inputs:
repo_org:
required: false
description: 'Tested repository organization name. Default is open-compass/opencompass'
type: string
default: 'open-compass/opencompass'
repo_ref:
required: false
description: 'Set branch or tag or commit id. Default is "main"'
type: string
default: 'main'
build_lmdeploy:
required: false
description: 'whether to build lmdeploy'
type: boolean
default: false
repo_org_lmdeploy:
required: false
description: 'Tested repository organization name. Default is internlm/lmdeploy'
type: string
default: 'InternLM/lmdeploy'
repo_ref_lmdeploy:
required: false
description: 'Set branch or tag or commit id. Default is "main"'
type: string
default: 'main'
regression_func_volc:
required: true
description: 'regression functions'
type: string
default: "['chat_models','base_models', 'chat_obj_fullbench', 'base_fullbench']"
regression_func_local:
required: true
description: 'regression functions'
type: string
default: "['cmd', 'api', 'chat_sub_fullbench']"
fullbench_eval:
required: true
description: 'fullbench volc functions'
type: string
default: "['base_objective','chat_objective','chat_subjective','base_long_context','chat_long_context']"
schedule:
- cron: '56 16 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
- cron: '15 14 * * 0,3'
env:
CONDA_ENV: opencompass_regression
PIP_CACHE_PATH: /cpfs01/user/qa-llm-cicd/.cache/pip
USERSPACE_PREFIX: /cpfs01/user/qa-llm-cicd
HF_CACHE_PATH: /cpfs01/shared/public/public_hdd/llmeval/model_weights/hf_hub
HF_DATASETS_OFFLINE: 1
HF_EVALUATE_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
VLLM_USE_MODELSCOPE: false
LMDEPLOY_USE_MODELSCOPE: false
HF_HUB_OFFLINE: 1
OUTPUT_FOLDER: cuda12.1_dist_${{ github.run_id }}
CONDA_PATH: ${{ secrets.WORKSPACE_PREFIX }}/miniconda3
PIP_CACHE_PATH: ${{ secrets.WORKSPACE_PREFIX }}/.cache/pip
REPORT_ROOT: ${{ secrets.WORKSPACE_PREFIX }}/eval_report/regression
COMPASS_DATA_CACHE: ${{ secrets.SHARESPACE_PREFIX }}/datasets/compass_data_cache
HUGGINGFACE_HUB_CACHE: ${{ secrets.SHARESPACE_PREFIX }}/models/opencompass_hf_hub
HF_HUB_CACHE: ${{ secrets.SHARESPACE_PREFIX }}/models/opencompass_hf_hub
HF_DATASETS_CACHE: ${{ secrets.SHARESPACE_PREFIX }}/datasets/hf_datasets_cache
HF_ENDPOINT: https://hf-mirror.com
CONDA_ENV: regression_test
export VLLM_WORKER_MULTIPROC_METHOD: spawn
jobs:
daily_run_test:
runs-on: self-hosted
environment: 'prod'
timeout-minutes: 240 #4hours
build-pypi:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
repository: ${{ github.event.inputs.repo_org || 'open-compass/opencompass' }}
ref: ${{github.event.inputs.repo_ref || 'main'}}
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Build lagent
run: |
pip install wheel setuptools
python setup.py sdist bdist_wheel
- name: Upload Artifacts
uses: actions/upload-artifact@v4
with:
if-no-files-found: error
path: dist/*
retention-days: 1
name: my-artifact-${{ github.run_id }}
build-pypi-lmdeploy:
if: ${{!cancelled() && (github.event_name == 'schedule' || inputs.build_lmdeploy)}}
strategy:
matrix:
pyver: [py310]
runs-on: ubuntu-latest
env:
PYTHON_VERSION: ${{ matrix.pyver }}
PLAT_NAME: manylinux2014_x86_64
DOCKER_TAG: cuda12.1
steps:
- name: Checkout repository
uses: actions/checkout@v3
with:
repository: ${{ github.event.inputs.repo_org_lmdeploy || 'InternLM/lmdeploy' }}
ref: ${{github.event.inputs.repo_ref_lmdeploy || 'main'}}
- name: Build
run: |
echo ${PYTHON_VERSION}
echo ${PLAT_NAME}
echo ${DOCKER_TAG}
echo ${OUTPUT_FOLDER}
echo ${GITHUB_RUN_ID}
# remove -it
sed -i 's/docker run --rm -it/docker run --rm/g' builder/manywheel/build_wheel.sh
bash builder/manywheel/build_wheel.sh ${PYTHON_VERSION} ${PLAT_NAME} ${DOCKER_TAG} ${OUTPUT_FOLDER}
- name: Upload Artifacts
uses: actions/upload-artifact@v4
with:
if-no-files-found: error
path: builder/manywheel/${{ env.OUTPUT_FOLDER }}
retention-days: 1
name: my-artifact-${{ github.run_id }}-${{ matrix.pyver }}
prepare_env:
if: ${{!cancelled()}}
needs: ['build-pypi', 'build-pypi-lmdeploy']
runs-on: volc_cu12
timeout-minutes: 120 #2hours
steps:
- name: Clone repository
uses: actions/checkout@v2
- name: Prepare - create conda env and install torch
run: |
eval "$(conda shell.bash hook)"
conda create -y --name ${{env.CONDA_ENV}} python=3.10
conda activate ${{env.CONDA_ENV}}
pip install torch torchvision torchaudio --cache-dir ${{env.PIP_CACHE_PATH}} --index-url https://download.pytorch.org/whl/cu118
conda info --envs
- name: Prepare - Pip install code
run: |
eval "$(conda shell.bash hook)"
conda activate ${{env.CONDA_ENV}}
pip install -e . --cache-dir ${{env.PIP_CACHE_PATH}}
pip install human_eval transformers==4.33.0 protobuf --cache-dir ${{env.PIP_CACHE_PATH}}
conda info --envs
- name: Prepare - prepare data and hf model
run: |
cp -r ${{env.USERSPACE_PREFIX}}/data .
rm -rf ~/.cache/huggingface/hub -f && mkdir ~/.cache -p && mkdir ~/.cache/huggingface -p
ln -s ${{env.HF_CACHE_PATH}} ~/.cache/huggingface/hub
- name: Run test
run: |
eval "$(conda shell.bash hook)"
conda activate ${{env.CONDA_ENV}}
conda info --envs
rm -rf regression_result_daily
export from_tf=TRUE
python3 run.py --models hf_internlm_chat_7b hf_internlm2_7b hf_chatglm3_6b_base hf_chatglm3_6b hf_qwen_7b_chat hf_qwen_7b --datasets FewCLUE_chid_ppl humaneval_gen ARC_c_ppl obqa_ppl --work-dir regression_result_daily
- name: Get result
run: |
eval "$(conda shell.bash hook)"
pip install pytest --cache-dir ${{env.PIP_CACHE_PATH}}
python -m pytest -s -v --color=yes .github/scripts/oc_score_assert.py
with:
repository: ${{ github.event.inputs.repo_org || 'open-compass/opencompass' }}
ref: ${{github.event.inputs.repo_ref || 'main'}}
- name: Download Artifacts
uses: actions/download-artifact@v4
with:
name: my-artifact-${{ github.run_id }}
- name: Remove Conda Env
if: always()
run: |
cp -r regression_result_daily/* /cpfs01/user/qa-llm-cicd/report
eval "$(conda shell.bash hook)"
. ${{ secrets.WORKSPACE_PREFIX }}/miniconda3/bin/activate
conda env remove -y --name ${{env.CONDA_ENV}}
conda info --envs
- name: Prepare - create conda env and install torch - cu12
uses: nick-fields/retry@v3
with:
max_attempts: 3
timeout_minutes: 120
command: |
. ${{env.CONDA_PATH}}/bin/activate
conda create -y --name ${{env.CONDA_ENV}} python=3.10
conda activate ${{env.CONDA_ENV}}
pip install -r ${{ secrets.WORKSPACE_PREFIX }}/config/requirements.txt --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass*.whl --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[lmdeploy] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[vllm] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[full] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[api] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --cache-dir ${{env.PIP_CACHE_PATH}}
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install ${{ secrets.WORKSPACE_PREFIX }}/packages/flash_attn-2.7.0.post2+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install xformers --index-url https://download.pytorch.org/whl/cu121 --cache-dir ${{env.PIP_CACHE_PATH}}
cp -r /root/nltk_data ${{env.CONDA_PATH}}/envs/${{env.CONDA_ENV}}/nltk_data
- name: Prepare - reinstall lmdeploy - cu12
if: ${{github.event_name == 'schedule' || inputs.build_lmdeploy}}
uses: actions/download-artifact@v4
with:
name: my-artifact-${{ github.run_id }}-py310
- name: Prepare - reinstall lmdeploy - cu12
if: ${{github.event_name == 'schedule' || inputs.build_lmdeploy}}
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
pip uninstall -y lmdeploy
pip install lmdeploy-*.whl --no-deps
- name: conda env
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
pip list
daily_run_test_volc:
if: ${{!cancelled() && contains(needs.prepare_env.result, 'success')}}
needs: prepare_env
strategy:
fail-fast: false
matrix:
regression_func: ${{fromJSON(github.event.inputs.regression_func_volc || '["chat_models","base_models","chat_obj_fullbench","base_fullbench"]')}}
runs-on: volc_cu12_daily
timeout-minutes: 180 #3hours
steps:
- name: Clone repository
uses: actions/checkout@v2
with:
repository: ${{ github.event.inputs.repo_org || 'open-compass/opencompass' }}
ref: ${{github.event.inputs.repo_ref || 'main'}}
- name: conda env
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
pip list
- name: modify config
if: matrix.regression_func != 'chat_sub_fullbench'
run: |
cp -r ${{ secrets.WORKSPACE_PREFIX }}/ocplayground/template/configs_cluster/volc.py .
cat ${{ secrets.WORKSPACE_PREFIX }}/config/test_config.txt >> .github/scripts/eval_regression_${{matrix.regression_func}}.py
- name: Run test
uses: nick-fields/retry@v3
with:
max_attempts: 1
timeout_minutes: 180
command: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
opencompass .github/scripts/eval_regression_${{matrix.regression_func}}.py --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/${{matrix.regression_func}} --reuse --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/${{matrix.regression_func}}/*/summary regression_result_daily
python -m pytest -m ${{matrix.regression_func}} -s -v --color=yes .github/scripts/oc_score_assert.py
daily_run_test_local:
if: ${{!cancelled() && contains(needs.prepare_env.result, 'success')}}
needs: prepare_env
strategy:
fail-fast: false
matrix:
regression_func: ${{fromJSON(github.event.inputs.regression_func_local || '["cmd","api","chat_sub_fullbench"]')}}
runs-on: volc_cu12_local
timeout-minutes: 480 #6hours
steps:
- name: Clone repository
uses: actions/checkout@v2
with:
repository: ${{ github.event.inputs.repo_org || 'open-compass/opencompass' }}
ref: ${{github.event.inputs.repo_ref || 'main'}}
- name: conda env
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
pip list
- name: modify config
if: matrix.regression_func == 'chat_sub_fullbench'
run: |
cp -r ${{ secrets.WORKSPACE_PREFIX }}/ocplayground/template/configs_cluster/volc.py .
cat ${{ secrets.WORKSPACE_PREFIX }}/config/test_config_sub.txt >> .github/scripts/eval_regression_${{matrix.regression_func}}.py
- name: Run command testcase
if: matrix.regression_func == 'cmd'
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
export from_tf=TRUE
python tools/list_configs.py internlm2_5 mmlu
opencompass --models hf_internlm2_5_7b --datasets race_ppl demo_gsm8k_chat_gen --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd1 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd1/*/summary regression_result_daily
python -m pytest -m case1 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --models hf_internlm2_5_7b_chat hf_internlm3_8b_instruct --datasets race_gen demo_gsm8k_chat_gen -a lmdeploy --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd2 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd2/*/summary regression_result_daily
python -m pytest -m case2 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --datasets race_ppl demo_gsm8k_chat_gen --hf-type base --hf-path internlm/internlm2_5-7b --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd3 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd3/*/summary regression_result_daily
python -m pytest -m case3 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --datasets race_gen demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm3-8b-instruct -a lmdeploy --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd4 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd4/*/summary regression_result_daily
python -m pytest -m case4 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --datasets race_gen demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm3-8b-instruct -a vllm --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd5 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd5/*/summary regression_result_daily
python -m pytest -m case5 -s -v --color=yes .github/scripts/oc_score_assert.py
- name: Run model test - api
if: matrix.regression_func == 'api'
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
lmdeploy serve api_server internlm/internlm3-8b-instruct --max-batch-size 256 --model-name internlm3 > ${{env.REPORT_ROOT}}/${{ github.run_id }}/restful.log 2>&1 &
echo "restful_pid=$!" >> "$GITHUB_ENV"
sleep 180s
env | grep PROXY
env | grep proxy
unset HTTP_PROXY;unset HTTPS_PROXY;unset http_proxy;unset https_proxy;
opencompass .github/scripts/eval_regression_api.py --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/api --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/api/*/summary regression_result_daily
python -m pytest -m api -s -v --color=yes .github/scripts/oc_score_assert.py
- name: Run model test - api kill
if: always() && matrix.regression_func == 'api'
run: |
kill -15 "$restful_pid"
- name: Run testcase
if: matrix.regression_func == 'chat_sub_fullbench'
env:
COMPASS_DATA_CACHE: ${{ secrets.SHARESPACE_PREFIX }}/datasets/compass_data_cache_subset
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
export from_tf=TRUE
opencompass .github/scripts/eval_regression_${{matrix.regression_func}}.py --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/${{matrix.regression_func}} --reuse --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/${{matrix.regression_func}}/*/summary regression_result_daily
python -m pytest -m ${{matrix.regression_func}} -s -v --color=yes .github/scripts/oc_score_assert.py
fullbench_run_test:
if: ${{!cancelled() && contains(needs.prepare_env.result, 'success')}}
needs: prepare_env
strategy:
fail-fast: false
matrix:
function_type: ${{fromJSON(github.event.inputs.fullbench_eval || '["base_objective","chat_objective","chat_subjective","base_long_context","chat_long_context"]')}}
runs-on: volc_cu12
timeout-minutes: 480 #6hours
steps:
- name: Clone repository
uses: actions/checkout@v2
with:
repository: ${{ github.event.inputs.repo_org || 'open-compass/opencompass' }}
ref: ${{github.event.inputs.repo_ref || 'main'}}
- name: conda env
run: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
pip list
- name: Run testcase
uses: nick-fields/retry@v3
with:
max_attempts: 1
timeout_minutes: 480
command: |
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
export from_tf=TRUE
opencompass ${{ secrets.WORKSPACE_PREFIX }}/ocplayground/template/regression/eval_${{ matrix.function_type }}.py --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/${{ matrix.function_type }} --reuse
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/${{ matrix.function_type }}/*/summary regression_result_daily
python -m pytest -m ${{ matrix.function_type }} -s -v --color=yes .github/scripts/oc_score_assert.py
notify_to_feishu:
if: ${{ always() && !cancelled() && contains(needs.*.result, 'failure') && (github.ref_name == 'develop' || github.ref_name == 'main') }}
needs: [daily_run_test]
environment: 'prod'
if: ${{ always() && github.event_name == 'schedule' && !cancelled() && contains(needs.*.result, 'failure') && (github.ref_name == 'develop' || github.ref_name == 'main') }}
needs: [daily_run_test_volc, daily_run_test_local, fullbench_run_test]
timeout-minutes: 5
runs-on: self-hosted
steps:

View File

@ -5,17 +5,22 @@ on:
# check links at 01:30 a.m. every day
- cron: '30 1 * * *'
workflow_dispatch: # allow manual trigger
jobs:
link-check:
runs-on: ubuntu-latest
steps:
# - uses: actions/checkout@v3
- name: linkchecker
- name: Install linkchecker
run: |
pip install linkchecker
linkchecker https://opencompass.readthedocs.io/ --no-robots -t 30 --no-warnings |
--ignore-url https://opencompass\.readthedocs\.io/.*/static/images/opencompass_logo\.svg |
--ignore-url https://opencompass\.readthedocs\.io/.*/_static/images/icon-menu-dots\.svg |
--ignore-url https://opencompass\.readthedocs\.io/policy |
--ignore-url https://opencompass\.readthedocs\.io/(en|zh_CN)/[0-9a-f]{40}/.*
- name: Run linkchecker
run: |
linkchecker https://opencompass.readthedocs.io/ --no-robots -t 30 --no-warnings \
--ignore-url "https://opencompass.readthedocs.io/.*/static/images/opencompass_logo.svg" \
--ignore-url "https://opencompass.readthedocs.io/.*/_static/images/icon-menu-dots.svg" \
--ignore-url "https://opencompass.readthedocs.io/policy" \
--ignore-url "https://opencompass.readthedocs.io/(en|zh_CN)/[0-9a-f]{40}/.*"

View File

@ -17,7 +17,7 @@ jobs:
python-version: '3.10'
- name: Install pre-commit hook
run: |
pip install pre-commit mmengine
pip install pre-commit==3.8.0 mmengine==0.10.5
pre-commit install
- name: Linting
run: pre-commit run --all-files

View File

@ -8,64 +8,88 @@ on:
- 'docs/**'
- 'configs/**'
- 'tools/**'
workflow_dispatch:
schedule:
- cron: '56 22 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
CONDA_ENV: opencompass_base
USERSPACE_PREFIX: /cpfs01/user/qa-llm-cicd
HF_CACHE_PATH: /cpfs01/shared/public/public_hdd/llmeval/model_weights/hf_hub
CONDA_ENV: pr_test
HF_DATASETS_OFFLINE: 1
HF_EVALUATE_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
VLLM_USE_MODELSCOPE: false
LMDEPLOY_USE_MODELSCOPE: false
HF_HUB_OFFLINE: 1
CONDA_PATH: /fs-computility/llm/qa-llm-cicd/miniconda3
PIP_CACHE_PATH: /fs-computility/llm/qa-llm-cicd/.cache/pip
REPORT_ROOT: /fs-computility/llm/qa-llm-cicd/eval_report/prtest
COMPASS_DATA_CACHE: /fs-computility/llm/shared/llmeval/datasets/compass_data_cache
HUGGINGFACE_HUB_CACHE: /fs-computility/llm/shared/llmeval/models/opencompass_hf_hub
HF_HUB_CACHE: /fs-computility/llm/shared/llmeval/models/opencompass_hf_hub
jobs:
pr_run_test:
runs-on: self-hosted
runs-on: volc_cu12_local
environment: 'prod'
timeout-minutes: 30
steps:
- name: Clone repository
- name: Checkout repository
uses: actions/checkout@v2
- name: Prepare - Install opencompass
run: |
eval "$(conda shell.bash hook)"
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
python3 -m pip uninstall opencompass -y
python3 -m pip install -e . --cache-dir ${{env.USERSPACE_PREFIX}}/.cache/pip
python3 -m pip install -e ".[full]" --cache-dir ${{env.PIP_CACHE_PATH}}
conda info --envs
- name: Prepare - prepare data and hf model
- name: conda env
run: |
cp -r ${{env.USERSPACE_PREFIX}}/data .
rm -rf ~/.cache/huggingface/hub -f && mkdir ~/.cache -p && mkdir ~/.cache/huggingface -p
ln -s ${{env.HF_CACHE_PATH}} ~/.cache/huggingface/hub
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
pip list
lmdeploy check_env
- name: Run test
run: |
eval "$(conda shell.bash hook)"
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
conda info --envs
rm -rf regression_result
python3 run.py --models hf_internlm2_chat_7b --datasets siqa_gen --work-dir regression_result --debug
opencompass --models hf_internlm2_5_20b_chat --datasets demo_gsm8k_chat_gen --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/regression_result1 --debug
opencompass --models hf_internlm2_5_7b_chat --datasets demo_gsm8k_chat_gen --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/regression_result2 --debug --max-num-workers 2
opencompass --models hf_internlm2_5_7b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/regression_result3 --debug --max-num-workers 2
- name: Get result
run: |
score=$(sed -n '$p' regression_result/*/summary/*.csv | awk -F ',' '{print $NF}')
if (( ${score%.*} >= 79 && ${score%.*} <= 81 )); then
echo "score is $score between 79 and 81"
score=$(sed -n '$p' ${{env.REPORT_ROOT}}/${{ github.run_id }}/regression_result1/*/summary/*.csv | awk -F ',' '{print $NF}')
if (( ${score%.*} >= 88 && ${score%.*} <= 89 )); then
echo "score is $score between 88 and 89"
else
echo "score is $score not between 79 and 81"
echo "score is $score not between 88 and 89"
exit 1
fi
score=$(sed -n '$p' ${{env.REPORT_ROOT}}/${{ github.run_id }}/regression_result2/*/summary/*.csv | awk -F ',' '{print $NF}')
if (( ${score%.*} >= 87 && ${score%.*} <= 88 )); then
echo "score is $score between 87 and 88"
else
echo "score is $score not between 87 and 88"
exit 1
fi
score=$(sed -n '$p' ${{env.REPORT_ROOT}}/${{ github.run_id }}/regression_result3/*/summary/*.csv | awk -F ',' '{print $NF}')
if (( ${score%.*} >= 87 && ${score%.*} <= 91 )); then
echo "score is $score between 87 and 91"
else
echo "score is $score not between 87 and 91"
exit 1
fi
rm -rf regression_result
- name: Uninstall opencompass
if: always()
run: |
eval "$(conda shell.bash hook)"
. ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}}
python3 -m pip uninstall opencompass -y
conda info --envs
@ -73,9 +97,9 @@ jobs:
notify_to_feishu:
if: ${{ always() && !cancelled() && contains(needs.*.result, 'failure') && (github.ref_name == 'develop' || github.ref_name == 'main') }}
needs: [pr_run_test]
environment: 'prod'
timeout-minutes: 5
runs-on: self-hosted
environment: 'prod'
steps:
- name: notify
run: |

View File

@ -20,7 +20,7 @@ jobs:
matrix:
python-version: ['3.10']
include:
- torch: 2.0.0
- torch: 2.5.1
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
@ -30,7 +30,7 @@ jobs:
- name: Upgrade pip
run: python -m pip install --upgrade pip
- name: Install PyTorch
run: pip install torch==${{matrix.torch}}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
run: pip install torch==${{matrix.torch}} -f https://download.pytorch.org/whl/cpu/torch_stable.html
- name: Install system dependencies
run: |
sudo sed -i '$ a deb http://th.archive.ubuntu.com/ubuntu jammy main' /etc/apt/sources.list
@ -106,7 +106,7 @@ jobs:
- name: Upgrade pip
run: python -m pip install pip --upgrade
- name: Install PyTorch
run: pip install torch==2.0.0+${{matrix.platform}} -f https://download.pytorch.org/whl/${{matrix.platform}}/torch_stable.html
run: pip install torch==2.5.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html
- name: Install opencompass dependencies
run: |
pip install -r requirements.txt

View File

@ -1,21 +1,26 @@
name: deploy
on: push
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
on:
push:
workflow_dispatch:
inputs:
confirm_publish:
description: 'Type YES to confirm publishing to PyPI'
required: true
type: string
jobs:
build-n-publish:
runs-on: ubuntu-latest
if: startsWith(github.event.ref, 'refs/tags')
if: |
github.event_name == 'push' && startsWith(github.event.ref, 'refs/tags') ||
(github.event_name == 'workflow_dispatch' && inputs.confirm_publish == 'YES')
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.7
uses: actions/setup-python@v1
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: '3.10'
- name: Build lagent
run: |
pip install wheel

3
.gitignore vendored
View File

@ -1,4 +1,4 @@
.DS_Store
output_*/
outputs/
scripts/
@ -102,6 +102,7 @@ configs/sft_cfg/60B/*
configs/sft_cfg/100B/*
configs/cky/
configs/_internal_legacy*
# in case llama clone in the opencompass
llama/

View File

@ -7,8 +7,8 @@ assign:
scedule:
'*/1 * * * *'
assignees:
- Leymore
- bittersweet1999
- liushz
- kennymckormick
- MaiziXiao
- acylam
- tonysy

View File

@ -1,6 +1,7 @@
exclude: |
(?x)^(
tests/data/|
tests/dataset/|
opencompass/models/internal/|
opencompass/utils/internal/|
opencompass/openicl/icl_evaluator/hf_metrics/|
@ -10,24 +11,40 @@ exclude: |
opencompass/datasets/teval/|
opencompass/datasets/NPHardEval/|
opencompass/datasets/TheoremQA|
docs/zh_cn/advanced_guides/compassbench_intro.md
opencompass/datasets/subjective/mtbench101.py|
docs/zh_cn/advanced_guides/compassbench_intro.md |
docs/zh_cn/advanced_guides/compassbench_v2_0.md |
opencompass/utils/datasets.py |
opencompass/utils/datasets_info.py
)
repos:
- repo: https://gitee.com/openmmlab/mirrors-flake8
rev: 5.0.4
hooks:
- id: flake8
exclude: configs/
exclude: |
(?x)^(
opencompass/configs/|
examples/
)
- repo: https://gitee.com/openmmlab/mirrors-isort
rev: 5.11.5
hooks:
- id: isort
exclude: configs/
exclude: |
(?x)^(
opencompass/configs/|
examples/
)
- repo: https://gitee.com/openmmlab/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
exclude: configs/
exclude: |
(?x)^(
opencompass/configs/|
examples/
)
- repo: https://gitee.com/openmmlab/mirrors-codespell
rev: v2.2.1
hooks:
@ -35,7 +52,9 @@ repos:
exclude: |
(?x)^(
.*\.jsonl|
configs/
.*\.md.template|
opencompass/configs/ |
examples/
)
- repo: https://gitee.com/openmmlab/mirrors-pre-commit-hooks
rev: v4.3.0
@ -45,7 +64,6 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/.*?/.*\.txt
)
- id: check-yaml
- id: end-of-file-fixer
@ -53,7 +71,6 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/.*?/.*\.txt
)
- id: requirements-txt-fixer
- id: double-quote-string-fixer
@ -85,7 +102,25 @@ repos:
language: script
pass_filenames: true
require_serial: true
files: ^configs/datasets
files: ^opencompass/configs/datasets
- repo: local
hooks:
- id: update-dataset-suffix-pacakge
name: dataset suffix updater(package)
entry: ./tools/update_dataset_suffix.py
language: script
pass_filenames: false
# require_serial: true
# files: ^opencompass/configs/datasets
args:
- --root_folder
- opencompass/configs/datasets
- repo: https://gitee.com/mirrors/gitleaks
rev: v8.23.1
hooks:
- id: gitleaks
entry: "gitleaks dir"
args: ["--verbose", "--redact=50"]
# - repo: https://github.com/open-mmlab/pre-commit-hooks
# rev: v0.2.0 # Use the ref you want to point at
# hooks:

View File

@ -1,33 +1,51 @@
exclude: |
(?x)^(
tests/data/|
tests/dataset/|
opencompass/models/internal/|
opencompass/utils/internal/|
opencompass/openicl/icl_evaluator/hf_metrics/|
opencompass/datasets/lawbench/utils|
opencompass/datasets/lawbench/evaluation_functions/|
opencompass/datasets/medbench/|
opencompass/datasets/matbench/|
opencompass/datasets/teval/|
opencompass/datasets/NPHardEval/|
opencompass/datasets/TheoremQA|
docs/zh_cn/advanced_guides/compassbench_intro.md
opencompass/datasets/subjective/mtbench101.py|
docs/zh_cn/advanced_guides/compassbench_intro.md |
docs/zh_cn/advanced_guides/compassbench_v2_0.md |
opencompass/utils/datasets.py |
opencompass/utils/datasets_info.py
)
repos:
- repo: https://github.com/PyCQA/flake8
rev: 5.0.4
hooks:
- id: flake8
exclude: configs/
exclude: |
(?x)^(
opencompass/configs/|
examples/
)
- repo: https://github.com/PyCQA/isort
rev: 5.11.5
hooks:
- id: isort
exclude: configs/
exclude: |
(?x)^(
opencompass/configs/|
examples/
)
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.32.0
hooks:
- id: yapf
exclude: configs/
exclude: |
(?x)^(
opencompass/configs/|
examples/
)
- repo: https://github.com/codespell-project/codespell
rev: v2.2.1
hooks:
@ -36,7 +54,8 @@ repos:
(?x)^(
.*\.jsonl|
.*\.md.template|
configs/
opencompass/configs/ |
examples/
)
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.3.0
@ -46,7 +65,6 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/.*?/.*\.txt
)
- id: check-yaml
- id: end-of-file-fixer
@ -54,7 +72,6 @@ repos:
(?x)^(
dicts/|
projects/.*?/dicts/|
configs/.*?/.*\.txt
)
- id: requirements-txt-fixer
- id: double-quote-string-fixer
@ -86,7 +103,25 @@ repos:
language: script
pass_filenames: true
require_serial: true
files: ^configs/datasets
files: ^opencompass/configs/datasets
- repo: local
hooks:
- id: update-dataset-suffix-pacakge
name: dataset suffix updater(package)
entry: ./tools/update_dataset_suffix.py
language: script
pass_filenames: false
# require_serial: true
# files: ^opencompass/configs/datasets
args:
- --root_folder
- opencompass/configs/datasets
- repo: https://github.com/gitleaks/gitleaks
rev: v8.23.1
hooks:
- id: gitleaks
entry: "gitleaks dir"
args: ["--verbose", "--redact=50"]
# - repo: https://github.com/open-mmlab/pre-commit-hooks
# rev: v0.2.0 # Use the ref you want to point at
# hooks:

3
MANIFEST.in Normal file
View File

@ -0,0 +1,3 @@
recursive-include opencompass/configs *.py *.yml *.json *.txt *.md
recursive-include opencompass/openicl/icl_evaluator/hf_metrics *.py
recursive-include opencompass/datasets *.py *.yml *.json *.txt *.md *.yaml

604
README.md
View File

@ -34,17 +34,6 @@ English | [简体中文](README_zh-CN.md)
>
> **Star Us**, You will receive all release notifications from GitHub without any delay ~ ⭐️
## 📣 OpenCompass 2.0
We are thrilled to introduce OpenCompass 2.0, an advanced suite featuring three key components: [CompassKit](https://github.com/open-compass), [CompassHub](https://hub.opencompass.org.cn/home), and [CompassRank](https://rank.opencompass.org.cn/home).
![oc20](https://github.com/tonysy/opencompass/assets/7881589/90dbe1c0-c323-470a-991e-2b37ab5350b2)
**CompassRank** has been significantly enhanced into the leaderboards that now incorporates both open-source benchmarks and proprietary benchmarks. This upgrade allows for a more comprehensive evaluation of models across the industry.
**CompassHub** presents a pioneering benchmark browser interface, designed to simplify and expedite the exploration and utilization of an extensive array of benchmarks for researchers and practitioners alike. To enhance the visibility of your own benchmark within the community, we warmly invite you to contribute it to CompassHub. You may initiate the submission process by clicking [here](https://hub.opencompass.org.cn/dataset-submit).
**CompassKit** is a powerful collection of evaluation toolkits specifically tailored for Large Language Models and Large Vision-language Models. It provides an extensive set of tools to assess and measure the performance of these complex models effectively. Welcome to try our toolkits for in your research and products.
<details>
<summary><kbd>Star History</kbd></summary>
<picture>
@ -64,23 +53,232 @@ Just like a compass guides us on our journey, OpenCompass will guide you through
🔥🔥🔥 We are delighted to announce that **the OpenCompass has been recommended by the Meta AI**, click [Get Started](https://ai.meta.com/llama/get-started/#validation) of Llama for more information.
> **Attention**<br />
> We launch the OpenCompass Collaboration project, welcome to support diverse evaluation benchmarks into OpenCompass!
> Clike [Issue](https://github.com/open-compass/opencompass/issues/248) for more information.
> Let's work together to build a more powerful OpenCompass toolkit!
> Breaking Change Notice: In version 0.4.0, we are consolidating all AMOTIC configuration files (previously located in ./configs/datasets, ./configs/models, and ./configs/summarizers) into the opencompass package. Users are advised to update their configuration references to reflect this structural change.
## 🚀 What's New <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2024.05.08\]** We supported the evaluation of 4 MoE models: [Mixtral-8x22B-v0.1](configs/models/mixtral/hf_mixtral_8x22b_v0_1.py), [Mixtral-8x22B-Instruct-v0.1](configs/models/mixtral/hf_mixtral_8x22b_instruct_v0_1.py), [Qwen1.5-MoE-A2.7B](configs/models/qwen/hf_qwen1_5_moe_a2_7b.py), [Qwen1.5-MoE-A2.7B-Chat](configs/models/qwen/hf_qwen1_5_moe_a2_7b_chat.py). Try them out now!
- **\[2024.04.30\]** We supported evaluating a model's compression efficiency by calculating its Bits per Character (BPC) metric on an [external corpora](configs/datasets/llm_compression/README.md) ([official paper](https://github.com/hkust-nlp/llm-compression-intelligence)). Check out the [llm-compression](configs/eval_llm_compression.py) evaluation config now! 🔥🔥🔥
- **\[2024.04.29\]** We report the performance of several famous LLMs on the common benchmarks, welcome to [documentation](https://opencompass.readthedocs.io/en/latest/user_guides/corebench.html) for more information! 🔥🔥🔥.
- **\[2024.04.26\]** We deprecated the multi-madality evaluating function from OpenCompass, related implement has moved to [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), welcome to use! 🔥🔥🔥.
- **\[2024.04.26\]** We supported the evaluation of [ArenaHard](configs/eval_subjective_arena_hard.py) welcome to try!🔥🔥🔥.
- **\[2024.04.22\]** We supported the evaluation of [LLaMA3](configs/models/hf_llama/hf_llama3_8b.py) 和 [LLaMA3-Instruct](configs/models/hf_llama/hf_llama3_8b_instruct.py), welcome to try! 🔥🔥🔥
- **\[2024.02.29\]** We supported the MT-Bench, AlpacalEval and AlignBench, more information can be found [here](https://opencompass.readthedocs.io/en/latest/advanced_guides/subjective_evaluation.html)
- **\[2024.01.30\]** We release OpenCompass 2.0. Click [CompassKit](https://github.com/open-compass), [CompassHub](https://hub.opencompass.org.cn/home), and [CompassRank](https://rank.opencompass.org.cn/home) for more information !
- **\[2025.04.01\]** OpenCompass now supports `CascadeEvaluator`, a flexible evaluation mechanism that allows multiple evaluators to work in sequence. This enables creating customized evaluation pipelines for complex assessment scenarios. Check out the [documentation](docs/en/advanced_guides/llm_judge.md) for more details! 🔥🔥🔥
- **\[2025.03.11\]** We have supported evaluation for `SuperGPQA` which is a great benchmark for measuring LLM knowledge ability 🔥🔥🔥
- **\[2025.02.28\]** We have added a tutorial for `DeepSeek-R1` series model, please check [Evaluating Reasoning Model](docs/en/user_guides/deepseek_r1.md) for more details! 🔥🔥🔥
- **\[2025.02.15\]** We have added two powerful evaluation tools: `GenericLLMEvaluator` for LLM-as-judge evaluations and `MATHVerifyEvaluator` for mathematical reasoning assessments. Check out the documentation for [LLM Judge](docs/en/advanced_guides/llm_judge.md) and [Math Evaluation](docs/en/advanced_guides/general_math.md) for more details! 🔥🔥🔥
- **\[2025.01.16\]** We now support the [InternLM3-8B-Instruct](https://huggingface.co/internlm/internlm3-8b-instruct) model which has enhanced performance on reasoning and knowledge-intensive tasks.
- **\[2024.12.17\]** We have provided the evaluation script for the December [CompassAcademic](examples/eval_academic_leaderboard_202412.py), which allows users to easily reproduce the official evaluation results by configuring it.
- **\[2024.11.14\]** OpenCompass now offers support for a sophisticated benchmark designed to evaluate complex reasoning skills — [MuSR](https://arxiv.org/pdf/2310.16049). Check out the [demo](examples/eval_musr.py) and give it a spin! 🔥🔥🔥
- **\[2024.11.14\]** OpenCompass now supports the brand new long-context language model evaluation benchmark — [BABILong](https://arxiv.org/pdf/2406.10149). Have a look at the [demo](examples/eval_babilong.py) and give it a try! 🔥🔥🔥
- **\[2024.10.14\]** We now support the OpenAI multilingual QA dataset [MMMLU](https://huggingface.co/datasets/openai/MMMLU). Feel free to give it a try! 🔥🔥🔥
- **\[2024.09.19\]** We now support [Qwen2.5](https://huggingface.co/Qwen)(0.5B to 72B) with multiple backend(huggingface/vllm/lmdeploy). Feel free to give them a try! 🔥🔥🔥
- **\[2024.09.17\]** We now support OpenAI o1(`o1-mini-2024-09-12` and `o1-preview-2024-09-12`). Feel free to give them a try! 🔥🔥🔥
- **\[2024.09.05\]** We now support answer extraction through model post-processing to provide a more accurate representation of the model's capabilities. As part of this update, we have integrated [XFinder](https://github.com/IAAR-Shanghai/xFinder) as our first post-processing model. For more detailed information, please refer to the [documentation](opencompass/utils/postprocessors/xfinder/README.md), and give it a try! 🔥🔥🔥
- **\[2024.08.20\]** OpenCompass now supports the [SciCode](https://github.com/scicode-bench/SciCode): A Research Coding Benchmark Curated by Scientists. 🔥🔥🔥
- **\[2024.08.16\]** OpenCompass now supports the brand new long-context language model evaluation benchmark — [RULER](https://arxiv.org/pdf/2404.06654). RULER provides an evaluation of long-context including retrieval, multi-hop tracing, aggregation, and question answering through flexible configurations. Check out the [RULER](configs/datasets/ruler/README.md) evaluation config now! 🔥🔥🔥
- **\[2024.08.09\]** We have released the example data and configuration for the CompassBench-202408, welcome to [CompassBench](https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/compassbench_intro.html) for more details. 🔥🔥🔥
- **\[2024.08.01\]** We supported the [Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315) models. Welcome to try! 🔥🔥🔥
- **\[2024.07.23\]** We supported the [ModelScope](www.modelscope.cn) datasets, you can load them on demand without downloading all the data to your local disk. Welcome to try! 🔥🔥🔥
- **\[2024.07.17\]** We are excited to announce the release of NeedleBench's [technical report](http://arxiv.org/abs/2407.11963). We invite you to visit our [support documentation](https://opencompass.readthedocs.io/en/latest/advanced_guides/needleinahaystack_eval.html) for detailed evaluation guidelines. 🔥🔥🔥
- **\[2024.07.04\]** OpenCompass now supports InternLM2.5, which has **outstanding reasoning capability**, **1M Context window and** and **stronger tool use**, you can try the models in [OpenCompass Config](https://github.com/open-compass/opencompass/tree/main/configs/models/hf_internlm) and [InternLM](https://github.com/InternLM/InternLM) .🔥🔥🔥.
- **\[2024.06.20\]** OpenCompass now supports one-click switching between inference acceleration backends, enhancing the efficiency of the evaluation process. In addition to the default HuggingFace inference backend, it now also supports popular backends [LMDeploy](https://github.com/InternLM/lmdeploy) and [vLLM](https://github.com/vllm-project/vllm). This feature is available via a simple command-line switch and through deployment APIs. For detailed usage, see the [documentation](docs/en/advanced_guides/accelerator_intro.md).🔥🔥🔥.
> [More](docs/en/notes/news.md)
## 📊 Leaderboard
We provide [OpenCompass Leaderboard](https://rank.opencompass.org.cn/home) for the community to rank all public models and API models. If you would like to join the evaluation, please provide the model repository URL or a standard API interface to the email address `opencompass@pjlab.org.cn`.
You can also refer to [CompassAcademic](configs/eval_academic_leaderboard_202412.py) to quickly reproduce the leaderboard results. The currently selected datasets include Knowledge Reasoning (MMLU-Pro/GPQA Diamond), Logical Reasoning (BBH), Mathematical Reasoning (MATH-500, AIME), Code Generation (LiveCodeBench, HumanEval), and Instruction Following (IFEval)."
<p align="right"><a href="#top">🔝Back to top</a></p>
## 🛠️ Installation
Below are the steps for quick installation and datasets preparation.
### 💻 Environment Setup
We highly recommend using conda to manage your python environment.
- #### Create your virtual environment
```bash
conda create --name opencompass python=3.10 -y
conda activate opencompass
```
- #### Install OpenCompass via pip
```bash
pip install -U opencompass
## Full installation (with support for more datasets)
# pip install "opencompass[full]"
## Environment with model acceleration frameworks
## Manage different acceleration frameworks using virtual environments
## since they usually have dependency conflicts with each other.
# pip install "opencompass[lmdeploy]"
# pip install "opencompass[vllm]"
## API evaluation (i.e. Openai, Qwen)
# pip install "opencompass[api]"
```
- #### Install OpenCompass from source
If you want to use opencompass's latest features, or develop new features, you can also build it from source
```bash
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
# pip install -e ".[full]"
# pip install -e ".[vllm]"
```
### 📂 Data Preparation
You can choose one for the following method to prepare datasets.
#### Offline Preparation
You can download and extract the datasets with the following commands:
```bash
# Download dataset to data/ folder
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip
```
#### Automatic Download from OpenCompass
We have supported download datasets automatic from the OpenCompass storage server. You can run the evaluation with extra `--dry-run` to download these datasets.
Currently, the supported datasets are listed in [here](https://github.com/open-compass/opencompass/blob/main/opencompass/utils/datasets_info.py#L259). More datasets will be uploaded recently.
#### (Optional) Automatic Download with ModelScope
Also you can use the [ModelScope](www.modelscope.cn) to load the datasets on demand.
Installation:
```bash
pip install modelscope[framework]
export DATASET_SOURCE=ModelScope
```
Then submit the evaluation task without downloading all the data to your local disk. Available datasets include:
```bash
humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ceval, math, LCSTS, Xsum, winogrande, openbookqa, AGIEval, gsm8k, nq, race, siqa, mbpp, mmlu, hellaswag, ARC, BBH, xstory_cloze, summedits, GAOKAO-BENCH, OCNLI, cmnli
```
Some third-party features, like Humaneval and Llama, may require additional steps to work properly, for detailed steps please refer to the [Installation Guide](https://opencompass.readthedocs.io/en/latest/get_started/installation.html).
<p align="right"><a href="#top">🔝Back to top</a></p>
## 🏗️ Evaluation
After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared. Now you can start your first evaluation using OpenCompass!
### Your first evaluation with OpenCompass!
OpenCompass support setting your configs via CLI or a python script. For simple evaluation settings we recommend using CLI, for more complex evaluation, it is suggested using the script way. You can find more example scripts under the configs folder.
```bash
# CLI
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen
# Python scripts
opencompass examples/eval_chat_demo.py
```
You can find more script examples under [examples](./examples) folder.
### API evaluation
OpenCompass, by its design, does not really discriminate between open-source models and API models. You can evaluate both model types in the same way or even in one settings.
```bash
export OPENAI_API_KEY="YOUR_OPEN_API_KEY"
# CLI
opencompass --models gpt_4o_2024_05_13 --datasets demo_gsm8k_chat_gen
# Python scripts
opencompass examples/eval_api_demo.py
# You can use o1_mini_2024_09_12/o1_preview_2024_09_12 for o1 models, we set max_completion_tokens=8192 as default.
```
### Accelerated Evaluation
Additionally, if you want to use an inference backend other than HuggingFace for accelerated evaluation, such as LMDeploy or vLLM, you can do so with the command below. Please ensure that you have installed the necessary packages for the chosen backend and that your model supports accelerated inference with it. For more information, see the documentation on inference acceleration backends [here](docs/en/advanced_guides/accelerator_intro.md). Below is an example using LMDeploy:
```bash
# CLI
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy
# Python scripts
opencompass examples/eval_lmdeploy_demo.py
```
### Supported Models and Datasets
OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the [tools](./docs/en/tools.md#list-configs).
```bash
# List all configurations
python tools/list_configs.py
# List all configurations related to llama and mmlu
python tools/list_configs.py llama mmlu
```
#### Supported Models
If the model is not on the list but supported by Huggingface AutoModel class or encapsulation of inference engine based on OpenAI interface (see [docs](https://opencompass.readthedocs.io/en/latest/advanced_guides/new_model.html) for details), you can also evaluate it with OpenCompass. You are welcome to contribute to the maintenance of the OpenCompass supported model and dataset lists.
```bash
opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat
```
#### Supported Datasets
Currently, OpenCompass have provided standard recommended configurations for datasets. Generally, config files ending with `_gen.py` or `_llm_judge_gen.py` will point to the recommended config we provide for this dataset. You can refer to [docs](https://opencompass.readthedocs.io/en/latest/dataset_statistics.html) for more details.
```bash
# Recommended Evaluation Config based on Rules
opencompass --datasets aime2024_gen --models hf_internlm2_5_1_8b_chat
# Recommended Evaluation Config based on LLM Judge
opencompass --datasets aime2024_llmjudge_gen --models hf_internlm2_5_1_8b_chat
```
If you want to use multiple GPUs to evaluate the model in data parallel, you can use `--max-num-worker`.
```bash
CUDA_VISIBLE_DEVICES=0,1 opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat --max-num-worker 2
```
> \[!TIP\]
>
> `--hf-num-gpus` is used for model parallel(huggingface format), `--max-num-worker` is used for data parallel.
> \[!TIP\]
>
> configuration with `_ppl` is designed for base model typically.
> configuration with `_gen` can be used for both base model and chat model.
Through the command line or configuration files, OpenCompass also supports evaluating APIs or custom models, as well as more diversified evaluation strategies. Please read the [Quick Start](https://opencompass.readthedocs.io/en/latest/get_started/quick_start.html) to learn how to run an evaluation task.
<p align="right"><a href="#top">🔝Back to top</a></p>
## 📣 OpenCompass 2.0
We are thrilled to introduce OpenCompass 2.0, an advanced suite featuring three key components: [CompassKit](https://github.com/open-compass), [CompassHub](https://hub.opencompass.org.cn/home), and [CompassRank](https://rank.opencompass.org.cn/home).
![oc20](https://github.com/tonysy/opencompass/assets/7881589/90dbe1c0-c323-470a-991e-2b37ab5350b2)
**CompassRank** has been significantly enhanced into the leaderboards that now incorporates both open-source benchmarks and proprietary benchmarks. This upgrade allows for a more comprehensive evaluation of models across the industry.
**CompassHub** presents a pioneering benchmark browser interface, designed to simplify and expedite the exploration and utilization of an extensive array of benchmarks for researchers and practitioners alike. To enhance the visibility of your own benchmark within the community, we warmly invite you to contribute it to CompassHub. You may initiate the submission process by clicking [here](https://hub.opencompass.org.cn/dataset-submit).
**CompassKit** is a powerful collection of evaluation toolkits specifically tailored for Large Language Models and Large Vision-language Models. It provides an extensive set of tools to assess and measure the performance of these complex models effectively. Welcome to try our toolkits for in your research and products.
## ✨ Introduction
![image](https://github.com/open-compass/opencompass/assets/22607038/f45fe125-4aed-4f8c-8fe8-df4efb41a8ea)
@ -97,342 +295,17 @@ OpenCompass is a one-stop platform for large model evaluation, aiming to provide
- **Experiment management and reporting mechanism**: Use config files to fully record each experiment, and support real-time reporting of results.
## 📊 Leaderboard
We provide [OpenCompass Leaderboard](https://rank.opencompass.org.cn/home) for the community to rank all public models and API models. If you would like to join the evaluation, please provide the model repository URL or a standard API interface to the email address `opencompass@pjlab.org.cn`.
<p align="right"><a href="#top">🔝Back to top</a></p>
## 🛠️ Installation
Below are the steps for quick installation and datasets preparation.
### 💻 Environment Setup
#### Open-source Models with GPU
```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
```
#### API Models with CPU-only
```bash
conda create -n opencompass python=3.10 pytorch torchvision torchaudio cpuonly -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
# also please install requirements packages via `pip install -r requirements/api.txt` for API models if needed.
```
### 📂 Data Preparation
```bash
# Download dataset to data/ folder
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip
```
Some third-party features, like Humaneval and Llama, may require additional steps to work properly, for detailed steps please refer to the [Installation Guide](https://opencompass.readthedocs.io/en/latest/get_started/installation.html).
<p align="right"><a href="#top">🔝Back to top</a></p>
## 🏗️ Evaluation
After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared, you can evaluate the performance of the LLaMA-7b model on the MMLU and C-Eval datasets using the following command:
```bash
python run.py --models hf_llama_7b --datasets mmlu_ppl ceval_ppl
```
OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the [tools](./docs/en/tools.md#list-configs).
```bash
# List all configurations
python tools/list_configs.py
# List all configurations related to llama and mmlu
python tools/list_configs.py llama mmlu
```
You can also evaluate other HuggingFace models via command line. Taking LLaMA-7b as an example:
```bash
python run.py --datasets ceval_ppl mmlu_ppl --hf-type base --hf-path huggyllama/llama-7b
```
> \[!TIP\]
>
> configuration with `_ppl` is designed for base model typically.
> configuration with `_gen` can be used for both base model and chat model.
Through the command line or configuration files, OpenCompass also supports evaluating APIs or custom models, as well as more diversified evaluation strategies. Please read the [Quick Start](https://opencompass.readthedocs.io/en/latest/get_started/quick_start.html) to learn how to run an evaluation task.
<p align="right"><a href="#top">🔝Back to top</a></p>
## 📖 Dataset Support
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Language</b>
</td>
<td>
<b>Knowledge</b>
</td>
<td>
<b>Reasoning</b>
</td>
<td>
<b>Examination</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>Word Definition</b></summary>
We have supported a statistical list of all datasets that can be used on this platform in the documentation on the OpenCompass website.
- WiC
- SummEdits
You can quickly find the dataset you need from the list through sorting, filtering, and searching functions.
</details>
In addition, we provide a recommended configuration for each dataset, and some datasets also support LLM Judge-based configurations.
<details open>
<summary><b>Idiom Learning</b></summary>
Please refer to the dataset statistics chapter of [docs](https://opencompass.readthedocs.io/en/latest/dataset_statistics.html) for details.
- CHID
</details>
<details open>
<summary><b>Semantic Similarity</b></summary>
- AFQMC
- BUSTM
</details>
<details open>
<summary><b>Coreference Resolution</b></summary>
- CLUEWSC
- WSC
- WinoGrande
</details>
<details open>
<summary><b>Translation</b></summary>
- Flores
- IWSLT2017
</details>
<details open>
<summary><b>Multi-language Question Answering</b></summary>
- TyDi-QA
- XCOPA
</details>
<details open>
<summary><b>Multi-language Summary</b></summary>
- XLSum
</details>
</td>
<td>
<details open>
<summary><b>Knowledge Question Answering</b></summary>
- BoolQ
- CommonSenseQA
- NaturalQuestions
- TriviaQA
</details>
</td>
<td>
<details open>
<summary><b>Textual Entailment</b></summary>
- CMNLI
- OCNLI
- OCNLI_FC
- AX-b
- AX-g
- CB
- RTE
- ANLI
</details>
<details open>
<summary><b>Commonsense Reasoning</b></summary>
- StoryCloze
- COPA
- ReCoRD
- HellaSwag
- PIQA
- SIQA
</details>
<details open>
<summary><b>Mathematical Reasoning</b></summary>
- MATH
- GSM8K
</details>
<details open>
<summary><b>Theorem Application</b></summary>
- TheoremQA
- StrategyQA
- SciBench
</details>
<details open>
<summary><b>Comprehensive Reasoning</b></summary>
- BBH
</details>
</td>
<td>
<details open>
<summary><b>Junior High, High School, University, Professional Examinations</b></summary>
- C-Eval
- AGIEval
- MMLU
- GAOKAO-Bench
- CMMLU
- ARC
- Xiezhi
</details>
<details open>
<summary><b>Medical Examinations</b></summary>
- CMB
</details>
</td>
</tr>
</td>
</tr>
</tbody>
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Understanding</b>
</td>
<td>
<b>Long Context</b>
</td>
<td>
<b>Safety</b>
</td>
<td>
<b>Code</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>Reading Comprehension</b></summary>
- C3
- CMRC
- DRCD
- MultiRC
- RACE
- DROP
- OpenBookQA
- SQuAD2.0
</details>
<details open>
<summary><b>Content Summary</b></summary>
- CSL
- LCSTS
- XSum
- SummScreen
</details>
<details open>
<summary><b>Content Analysis</b></summary>
- EPRSTMT
- LAMBADA
- TNEWS
</details>
</td>
<td>
<details open>
<summary><b>Long Context Understanding</b></summary>
- LEval
- LongBench
- GovReports
- NarrativeQA
- Qasper
</details>
</td>
<td>
<details open>
<summary><b>Safety</b></summary>
- CivilComments
- CrowsPairs
- CValues
- JigsawMultilingual
- TruthfulQA
</details>
<details open>
<summary><b>Robustness</b></summary>
- AdvGLUE
</details>
</td>
<td>
<details open>
<summary><b>Code</b></summary>
- HumanEval
- HumanEvalX
- MBPP
- APPs
- DS1000
</details>
</td>
</tr>
</td>
</tr>
</tbody>
</table>
<p align="right"><a href="#top">🔝Back to top</a></p>
## 📖 Model Support
@ -452,20 +325,21 @@ Through the command line or configuration files, OpenCompass also supports evalu
<tr valign="top">
<td>
- [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [Baichuan](https://github.com/baichuan-inc)
- [BlueLM](https://github.com/vivo-ai-lab/BlueLM)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)
- [ChatGLM3](https://github.com/THUDM/ChatGLM3-6B)
- [Gemma](https://huggingface.co/google/gemma-7b)
- [InternLM](https://github.com/InternLM/InternLM)
- [LLaMA](https://github.com/facebookresearch/llama)
- [LLaMA3](https://github.com/meta-llama/llama3)
- [Vicuna](https://github.com/lm-sys/FastChat)
- [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [Baichuan](https://github.com/baichuan-inc)
- [WizardLM](https://github.com/nlpxucan/WizardLM)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)
- [ChatGLM3](https://github.com/THUDM/ChatGLM3-6B)
- [TigerBot](https://github.com/TigerResearch/TigerBot)
- [Qwen](https://github.com/QwenLM/Qwen)
- [BlueLM](https://github.com/vivo-ai-lab/BlueLM)
- [Gemma](https://huggingface.co/google/gemma-7b)
- ...
- [TigerBot](https://github.com/TigerResearch/TigerBot)
- [Vicuna](https://github.com/lm-sys/FastChat)
- [WizardLM](https://github.com/nlpxucan/WizardLM)
- [Yi](https://github.com/01-ai/Yi)
- ……
</td>
<td>
@ -495,7 +369,7 @@ Through the command line or configuration files, OpenCompass also supports evalu
## 🔜 Roadmap
- [x] Subjective Evaluation
- [ ] Release CompassAreana
- [x] Release CompassAreana.
- [x] Subjective evaluation.
- [x] Long-context
- [x] Long-context evaluation with extensive datasets.
@ -504,10 +378,10 @@ Through the command line or configuration files, OpenCompass also supports evalu
- [ ] Coding evaluation leaderboard.
- [x] Non-python language evaluation service.
- [x] Agent
- [ ] Support various agenet framework.
- [ ] Support various agent frameworks.
- [x] Evaluation of tool use of the LLMs.
- [x] Robustness
- [x] Support various attack method
- [x] Support various attack methods.
## 👷‍♂️ Contributing

View File

@ -34,16 +34,6 @@
>
> **收藏项目**,你将能第一时间获取 OpenCompass 的最新动态~⭐️
## 📣 OpenCompass 2.0
我们很高兴发布 OpenCompass 司南 2.0 大模型评测体系,它主要由三大核心模块构建而成:[CompassKit](https://github.com/open-compass)、[CompassHub](https://hub.opencompass.org.cn/home)以及[CompassRank](https://rank.opencompass.org.cn/home)。
**CompassRank** 系统进行了重大革新与提升,现已成为一个兼容并蓄的排行榜体系,不仅囊括了开源基准测试项目,还包含了私有基准测试。此番升级极大地拓宽了对行业内各类模型进行全面而深入测评的可能性。
**CompassHub** 创新性地推出了一个基准测试资源导航平台其设计初衷旨在简化和加快研究人员及行业从业者在多样化的基准测试库中进行搜索与利用的过程。为了让更多独具特色的基准测试成果得以在业内广泛传播和应用我们热忱欢迎各位将自定义的基准数据贡献至CompassHub平台。只需轻点鼠标通过访问[这里](https://hub.opencompass.org.cn/dataset-submit),即可启动提交流程。
**CompassKit** 是一系列专为大型语言模型和大型视觉-语言模型打造的强大评估工具合集,它所提供的全面评测工具集能够有效地对这些复杂模型的功能性能进行精准测量和科学评估。在此,我们诚挚邀请您在学术研究或产品研发过程中积极尝试运用我们的工具包,以助您取得更加丰硕的研究成果和产品优化效果。
<details>
<summary><kbd>Star History</kbd></summary>
<picture>
@ -63,23 +53,225 @@
🔥🔥🔥 祝贺 **OpenCompass 作为大模型标准测试工具被Meta AI官方推荐**, 点击 Llama 的 [入门文档](https://ai.meta.com/llama/get-started/#validation) 获取更多信息。
> **注意**<br />
> 我们正式启动 OpenCompass 共建计划,诚邀社区用户为 OpenCompass 提供更具代表性和可信度的客观评测数据集!
> 点击 [Issue](https://github.com/open-compass/opencompass/issues/248) 获取更多数据集.
> 让我们携手共进,打造功能强大易用的大模型评测平台!
> 重要通知:从 v0.4.0 版本开始,所有位于 ./configs/datasets、./configs/models 和 ./configs/summarizers 目录下的 AMOTIC 配置文件将迁移至 opencompass 包中。请及时更新您的配置文件路径。
## 🚀 最新进展 <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2024.05.08\]** 我们支持了以下四个MoE模型的评测配置文件: [Mixtral-8x22B-v0.1](configs/models/mixtral/hf_mixtral_8x22b_v0_1.py), [Mixtral-8x22B-Instruct-v0.1](configs/models/mixtral/hf_mixtral_8x22b_instruct_v0_1.py), [Qwen1.5-MoE-A2.7B](configs/models/qwen/hf_qwen1_5_moe_a2_7b.py), [Qwen1.5-MoE-A2.7B-Chat](configs/models/qwen/hf_qwen1_5_moe_a2_7b_chat.py) 。欢迎试用!
- **\[2024.04.30\]** 我们支持了计算模型在给定[数据集](configs/datasets/llm_compression/README.md)上的压缩率Bits per Character的评测方法[官方文献](https://github.com/hkust-nlp/llm-compression-intelligence))。欢迎试用[llm-compression](configs/eval_llm_compression.py)评测集! 🔥🔥🔥
- **\[2024.04.26\]** 我们报告了典型LLM在常用基准测试上的表现欢迎访问[文档](https://opencompass.readthedocs.io/zh-cn/latest/user_guides/corebench.html)以获取更多信息!🔥🔥🔥.
- **\[2024.04.26\]** 我们废弃了 OpenCompass 进行多模态大模型评测的功能,相关功能转移至 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit),推荐使用!🔥🔥🔥.
- **\[2024.04.26\]** 我们支持了 [ArenaHard评测](configs/eval_subjective_arena_hard.py) 欢迎试用!🔥🔥🔥.
- **\[2024.04.22\]** 我们支持了 [LLaMA3](configs/models/hf_llama/hf_llama3_8b.py) 和 [LLaMA3-Instruct](configs/models/hf_llama/hf_llama3_8b_instruct.py) 的评测,欢迎试用!🔥🔥🔥.
- **\[2024.02.29\]** 我们支持了MT-Bench、AlpacalEval和AlignBench更多信息可以在[这里](https://opencompass.readthedocs.io/en/latest/advanced_guides/subjective_evaluation.html)找到。
- **\[2024.01.30\]** 我们发布了OpenCompass 2.0。更多信息,请访问[CompassKit](https://github.com/open-compass)、[CompassHub](https://hub.opencompass.org.cn/home)和[CompassRank](https://rank.opencompass.org.cn/home)。
- **\[2025.04.01\]** OpenCompass 现已支持 `CascadeEvaluator`,允许多个评估器按顺序工作,可以为更复杂的评估场景创建自定义评估流程,查看[文档](docs/zh_cn/advanced_guides/llm_judge.md)了解具体用法!🔥🔥🔥
- **\[2025.03.11\]** 现已支持 `SuperGPQA` 覆盖285 个研究生学科的知识能力评测,欢迎尝试!🔥🔥🔥
- **\[2025.02.28\]** 我们为 `DeepSeek-R1` 系列模型添加了教程,请查看 [评估推理模型](docs/zh_cn/user_guides/deepseek_r1.md) 了解更多详情!🔥🔥🔥
- **\[2025.02.15\]** 我们新增了两个实用的评测工具用于LLM作为评判器的`GenericLLMEvaluator`和用于数学推理评估的`MATHVerifyEvaluator`。查看[LLM评判器](docs/zh_cn/advanced_guides/llm_judge.md)和[数学能力评测](docs/zh_cn/advanced_guides/general_math.md)文档了解更多详情!🔥🔥🔥
- **\[2025.01.16\]** 我们现已支持 [InternLM3-8B-Instruct](https://huggingface.co/internlm/internlm3-8b-instruct) 模型,该模型在推理、知识类任务上取得同量级最优性能,欢迎尝试。
- **\[2024.12.17\]** 我们提供了12月CompassAcademic学术榜单评估脚本 [CompassAcademic](configs/eval_academic_leaderboard_202412.py),你可以通过简单地配置复现官方评测结果。
- **\[2024.10.14\]** 现已支持OpenAI多语言问答数据集[MMMLU](https://huggingface.co/datasets/openai/MMMLU),欢迎尝试! 🔥🔥🔥
- **\[2024.09.19\]** 现已支持[Qwen2.5](https://huggingface.co/Qwen)(0.5B to 72B) ,可以使用多种推理后端(huggingface/vllm/lmdeploy), 欢迎尝试! 🔥🔥🔥
- **\[2024.09.05\]** 现已支持OpenAI o1 模型(`o1-mini-2024-09-12` and `o1-preview-2024-09-12`), 欢迎尝试! 🔥🔥🔥
- **\[2024.09.05\]** OpenCompass 现在支持通过模型后处理来进行答案提取,以更准确地展示模型的能力。作为此次更新的一部分,我们集成了 [XFinder](https://github.com/IAAR-Shanghai/xFinder) 作为首个后处理模型。具体信息请参阅 [文档](opencompass/utils/postprocessors/xfinder/README.md),欢迎尝试! 🔥🔥🔥
- **\[2024.08.20\]** OpenCompass 现已支持 [SciCode](https://github.com/scicode-bench/SciCode): A Research Coding Benchmark Curated by Scientists。 🔥🔥🔥
- **\[2024.08.16\]** OpenCompass 现已支持全新的长上下文语言模型评估基准——[RULER](https://arxiv.org/pdf/2404.06654)。RULER 通过灵活的配置,提供了对长上下文包括检索、多跳追踪、聚合和问答等多种任务类型的评测,欢迎访问[RULER](configs/datasets/ruler/README.md)。🔥🔥🔥
- **\[2024.07.23\]** 我们支持了[Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)模型,欢迎试用!🔥🔥🔥
- **\[2024.07.23\]** 我们支持了[ModelScope](www.modelscope.cn)数据集,您可以按需加载,无需事先下载全部数据到本地,欢迎试用!🔥🔥🔥
- **\[2024.07.17\]** 我们发布了CompassBench-202407榜单的示例数据和评测规则敬请访问 [CompassBench](https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/compassbench_intro.html) 获取更多信息。 🔥🔥🔥
- **\[2024.07.17\]** 我们正式发布 NeedleBench 的[技术报告](http://arxiv.org/abs/2407.11963)。诚邀您访问我们的[帮助文档](https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/needleinahaystack_eval.html)进行评估。🔥🔥🔥
- **\[2024.07.04\]** OpenCompass 现已支持 InternLM2.5 它拥有卓越的推理性能、有效支持百万字超长上下文以及工具调用能力整体升级,欢迎访问[OpenCompass Config](https://github.com/open-compass/opencompass/tree/main/configs/models/hf_internlm) 和 [InternLM](https://github.com/InternLM/InternLM) .🔥🔥🔥.
- **\[2024.06.20\]** OpenCompass 现已支持一键切换推理加速后端助力评测过程更加高效。除了默认的HuggingFace推理后端外还支持了常用的 [LMDeploy](https://github.com/InternLM/lmdeploy) 和 [vLLM](https://github.com/vllm-project/vllm) ,支持命令行一键切换和部署 API 加速服务两种方式,详细使用方法见[文档](docs/zh_cn/advanced_guides/accelerator_intro.md)。欢迎试用!🔥🔥🔥.
> [更多](docs/zh_cn/notes/news.md)
## 📊 性能榜单
我们将陆续提供开源模型和 API 模型的具体性能榜单,请见 [OpenCompass Leaderboard](https://rank.opencompass.org.cn/home) 。如需加入评测,请提供模型仓库地址或标准的 API 接口至邮箱 `opencompass@pjlab.org.cn`.
你也可以参考[CompassAcademic](configs/eval_academic_leaderboard_202412.py),快速地复现榜单的结果,目前选取的数据集包括 综合知识推理 (MMLU-Pro/GPQA Diamond) ,逻辑推理 (BBH) ,数学推理 (MATH-500, AIME) ,代码生成 (LiveCodeBench, HumanEval) ,指令跟随 (IFEval) 。
<p align="right"><a href="#top">🔝返回顶部</a></p>
## 🛠️ 安装指南
下面提供了快速安装和数据集准备的步骤。
### 💻 环境搭建
我们强烈建议使用 `conda` 来管理您的 Python 环境。
- #### 创建虚拟环境
```bash
conda create --name opencompass python=3.10 -y
conda activate opencompass
```
- #### 通过pip安装OpenCompass
```bash
# 支持绝大多数数据集及模型
pip install -U opencompass
# 完整安装(支持更多数据集)
# pip install "opencompass[full]"
# 模型推理后端,由于这些推理后端通常存在依赖冲突,建议使用不同的虚拟环境来管理它们。
# pip install "opencompass[lmdeploy]"
# pip install "opencompass[vllm]"
# API 测试(例如 OpenAI、Qwen
# pip install "opencompass[api]"
```
- #### 基于源码安装OpenCompass
如果希望使用 OpenCompass 的最新功能,也可以从源代码构建它:
```bash
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
# pip install -e ".[full]"
# pip install -e ".[vllm]"
```
### 📂 数据准备
#### 提前离线下载
OpenCompass支持使用本地数据集进行评测数据集的下载和解压可以通过以下命令完成
```bash
# 下载数据集到 data/ 处
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip
```
#### 从 OpenCompass 自动下载
我们已经支持从OpenCompass存储服务器自动下载数据集。您可以通过额外的 `--dry-run` 参数来运行评估以下载这些数据集。
目前支持的数据集列表在[这里](https://github.com/open-compass/opencompass/blob/main/opencompass/utils/datasets_info.py#L259)。更多数据集将会很快上传。
#### (可选) 使用 ModelScope 自动下载
另外,您还可以使用[ModelScope](www.modelscope.cn)来加载数据集:
环境准备:
```bash
pip install modelscope
export DATASET_SOURCE=ModelScope
```
配置好环境后,无需下载全部数据,直接提交评测任务即可。目前支持的数据集有:
```bash
humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ceval, math, LCSTS, Xsum, winogrande, openbookqa, AGIEval, gsm8k, nq, race, siqa, mbpp, mmlu, hellaswag, ARC, BBH, xstory_cloze, summedits, GAOKAO-BENCH, OCNLI, cmnli
```
有部分第三方功能,如 Humaneval 以及 Llama,可能需要额外步骤才能正常运行,详细步骤请参考[安装指南](https://opencompass.readthedocs.io/zh_CN/latest/get_started/installation.html)。
<p align="right"><a href="#top">🔝返回顶部</a></p>
## 🏗️ ️评测
在确保按照上述步骤正确安装了 OpenCompass 并准备好了数据集之后,现在您可以开始使用 OpenCompass 进行首次评估!
- ### 首次评测
OpenCompass 支持通过命令行界面 (CLI) 或 Python 脚本来设置配置。对于简单的评估设置,我们推荐使用 CLI而对于更复杂的评估则建议使用脚本方式。你可以在examples文件夹下找到更多脚本示例。
```bash
# 命令行界面 (CLI)
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen
# Python 脚本
opencompass examples/eval_chat_demo.py
```
你可以在[examples](./examples) 文件夹下找到更多的脚本示例。
- ### API评测
OpenCompass 在设计上并不区分开源模型与 API 模型。您可以以相同的方式或甚至在同一设置中评估这两种类型的模型。
```bash
export OPENAI_API_KEY="YOUR_OPEN_API_KEY"
# 命令行界面 (CLI)
opencompass --models gpt_4o_2024_05_13 --datasets demo_gsm8k_chat_gen
# Python 脚本
opencompass examples/eval_api_demo.py
# 现已支持 o1_mini_2024_09_12/o1_preview_2024_09_12 模型, 默认情况下 max_completion_tokens=8192.
```
- ### 推理后端
另外,如果您想使用除 HuggingFace 之外的推理后端来进行加速评估,比如 LMDeploy 或 vLLM可以通过以下命令进行。请确保您已经为所选的后端安装了必要的软件包并且您的模型支持该后端的加速推理。更多信息请参阅关于推理加速后端的文档 [这里](docs/zh_cn/advanced_guides/accelerator_intro.md)。以下是使用 LMDeploy 的示例:
```bash
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy
```
- ### 支持的模型与数据集
OpenCompass 预定义了许多模型和数据集的配置,你可以通过 [工具](./docs/zh_cn/tools.md#ListConfigs) 列出所有可用的模型和数据集配置。
```bash
# 列出所有配置
python tools/list_configs.py
# 列出所有跟 llama 及 mmlu 相关的配置
python tools/list_configs.py llama mmlu
```
#### 支持的模型
如果模型不在列表中,但支持 Huggingface AutoModel 类或支持针对 OpenAI 接口的推理引擎封装(详见[官方文档](https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/new_model.html)),您仍然可以使用 OpenCompass 对其进行评估。欢迎您贡献维护 OpenCompass 支持的模型和数据集列表。
```bash
opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat
```
#### 支持的数据集
目前OpenCompass针对数据集给出了标准的推荐配置。通常`_gen.py`或`_llm_judge_gen.py`为结尾的配置文件将指向我们为该数据集提供的推荐配置。您可以参阅[官方文档](https://opencompass.readthedocs.io/zh-cn/latest/dataset_statistics.html) 的数据集统计章节来获取详细信息。
```bash
# 基于规则的推荐配置
opencompass --datasets aime2024_gen --models hf_internlm2_5_1_8b_chat
# 基于LLM Judge的推荐配置
opencompass --datasets aime2024_llmjudge_gen --models hf_internlm2_5_1_8b_chat
```
此外,如果你想在多块 GPU 上使用模型进行推理,您可以使用 `--max-num-worker` 参数。
```bash
CUDA_VISIBLE_DEVICES=0,1 opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat --max-num-worker 2
```
> \[!TIP\]
>
> `--hf-num-gpus` 用于 模型并行(huggingface 格式)`--max-num-worker` 用于数据并行。
> \[!TIP\]
>
> configuration with `_ppl` is designed for base model typically.
> 配置带 `_ppl` 的配置设计给基础模型使用。
> 配置带 `_gen` 的配置可以同时用于基础模型和对话模型。
通过命令行或配置文件OpenCompass 还支持评测 API 或自定义模型,以及更多样化的评测策略。请阅读[快速开始](https://opencompass.readthedocs.io/zh_CN/latest/get_started/quick_start.html)了解如何运行一个评测任务。
更多教程请查看我们的[文档](https://opencompass.readthedocs.io/zh_CN/latest/index.html)。
<p align="right"><a href="#top">🔝返回顶部</a></p>
## 📣 OpenCompass 2.0
我们很高兴发布 OpenCompass 司南 2.0 大模型评测体系,它主要由三大核心模块构建而成:[CompassKit](https://github.com/open-compass)、[CompassHub](https://hub.opencompass.org.cn/home)以及[CompassRank](https://rank.opencompass.org.cn/home)。
**CompassRank** 系统进行了重大革新与提升,现已成为一个兼容并蓄的排行榜体系,不仅囊括了开源基准测试项目,还包含了私有基准测试。此番升级极大地拓宽了对行业内各类模型进行全面而深入测评的可能性。
**CompassHub** 创新性地推出了一个基准测试资源导航平台其设计初衷旨在简化和加快研究人员及行业从业者在多样化的基准测试库中进行搜索与利用的过程。为了让更多独具特色的基准测试成果得以在业内广泛传播和应用我们热忱欢迎各位将自定义的基准数据贡献至CompassHub平台。只需轻点鼠标通过访问[这里](https://hub.opencompass.org.cn/dataset-submit),即可启动提交流程。
**CompassKit** 是一系列专为大型语言模型和大型视觉-语言模型打造的强大评估工具合集,它所提供的全面评测工具集能够有效地对这些复杂模型的功能性能进行精准测量和科学评估。在此,我们诚挚邀请您在学术研究或产品研发过程中积极尝试运用我们的工具包,以助您取得更加丰硕的研究成果和产品优化效果。
## ✨ 介绍
![image](https://github.com/open-compass/opencompass/assets/22607038/30bcb2e2-3969-4ac5-9f29-ad3f4abb4f3b)
@ -98,339 +290,13 @@ OpenCompass 是面向大模型评测的一站式平台。其主要特点如下
- **灵活化拓展**想增加新模型或数据集想要自定义更高级的任务分割策略甚至接入新的集群管理系统OpenCompass 的一切均可轻松扩展!
## 📊 性能榜单
我们将陆续提供开源模型和 API 模型的具体性能榜单,请见 [OpenCompass Leaderboard](https://rank.opencompass.org.cn/home) 。如需加入评测,请提供模型仓库地址或标准的 API 接口至邮箱 `opencompass@pjlab.org.cn`.
<p align="right"><a href="#top">🔝返回顶部</a></p>
## 🛠️ 安装
下面展示了快速安装以及准备数据集的步骤。
### 💻 环境配置
#### 面向开源模型的GPU环境
```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
```
#### 面向API模型测试的CPU环境
```bash
conda create -n opencompass python=3.10 pytorch torchvision torchaudio cpuonly -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
# 如果需要使用各个API模型`pip install -r requirements/api.txt` 安装API模型的相关依赖
```
### 📂 数据准备
```bash
# 下载数据集到 data/ 处
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip
```
有部分第三方功能,如 Humaneval 以及 Llama,可能需要额外步骤才能正常运行,详细步骤请参考[安装指南](https://opencompass.readthedocs.io/zh_CN/latest/get_started/installation.html)。
<p align="right"><a href="#top">🔝返回顶部</a></p>
## 🏗️ ️评测
确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 LLaMA-7b 模型在 MMLU 和 C-Eval 数据集上的性能:
```bash
python run.py --models hf_llama_7b --datasets mmlu_ppl ceval_ppl
```
OpenCompass 预定义了许多模型和数据集的配置,你可以通过 [工具](./docs/zh_cn/tools.md#ListConfigs) 列出所有可用的模型和数据集配置。
```bash
# 列出所有配置
python tools/list_configs.py
# 列出所有跟 llama 及 mmlu 相关的配置
python tools/list_configs.py llama mmlu
```
你也可以通过命令行去评测其它 HuggingFace 模型。同样以 LLaMA-7b 为例:
```bash
python run.py --datasets ceval_ppl mmlu_ppl --hf-type base --hf-path huggyllama/llama-7b
```
通过命令行或配置文件OpenCompass 还支持评测 API 或自定义模型,以及更多样化的评测策略。请阅读[快速开始](https://opencompass.readthedocs.io/zh_CN/latest/get_started/quick_start.html)了解如何运行一个评测任务。
更多教程请查看我们的[文档](https://opencompass.readthedocs.io/zh_CN/latest/index.html)。
<p align="right"><a href="#top">🔝返回顶部</a></p>
## 📖 数据集支持
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
<b>语言</b>
</td>
<td>
<b>知识</b>
</td>
<td>
<b>推理</b>
</td>
<td>
<b>考试</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>字词释义</b></summary>
我们已经在OpenCompass官网的文档中支持了所有可在本平台上使用的数据集的统计列表。
- WiC
- SummEdits
您可以通过排序、筛选和搜索等功能从列表中快速找到您需要的数据集。
</details>
<details open>
<summary><b>成语习语</b></summary>
- CHID
</details>
<details open>
<summary><b>语义相似度</b></summary>
- AFQMC
- BUSTM
</details>
<details open>
<summary><b>指代消解</b></summary>
- CLUEWSC
- WSC
- WinoGrande
</details>
<details open>
<summary><b>翻译</b></summary>
- Flores
- IWSLT2017
</details>
<details open>
<summary><b>多语种问答</b></summary>
- TyDi-QA
- XCOPA
</details>
<details open>
<summary><b>多语种总结</b></summary>
- XLSum
</details>
</td>
<td>
<details open>
<summary><b>知识问答</b></summary>
- BoolQ
- CommonSenseQA
- NaturalQuestions
- TriviaQA
</details>
</td>
<td>
<details open>
<summary><b>文本蕴含</b></summary>
- CMNLI
- OCNLI
- OCNLI_FC
- AX-b
- AX-g
- CB
- RTE
- ANLI
</details>
<details open>
<summary><b>常识推理</b></summary>
- StoryCloze
- COPA
- ReCoRD
- HellaSwag
- PIQA
- SIQA
</details>
<details open>
<summary><b>数学推理</b></summary>
- MATH
- GSM8K
</details>
<details open>
<summary><b>定理应用</b></summary>
- TheoremQA
- StrategyQA
- SciBench
</details>
<details open>
<summary><b>综合推理</b></summary>
- BBH
</details>
</td>
<td>
<details open>
<summary><b>初中/高中/大学/职业考试</b></summary>
- C-Eval
- AGIEval
- MMLU
- GAOKAO-Bench
- CMMLU
- ARC
- Xiezhi
</details>
<details open>
<summary><b>医学考试</b></summary>
- CMB
</details>
</td>
</tr>
</td>
</tr>
</tbody>
<tbody>
<tr align="center" valign="bottom">
<td>
<b>理解</b>
</td>
<td>
<b>长文本</b>
</td>
<td>
<b>安全</b>
</td>
<td>
<b>代码</b>
</td>
</tr>
<tr valign="top">
<td>
<details open>
<summary><b>阅读理解</b></summary>
- C3
- CMRC
- DRCD
- MultiRC
- RACE
- DROP
- OpenBookQA
- SQuAD2.0
</details>
<details open>
<summary><b>内容总结</b></summary>
- CSL
- LCSTS
- XSum
- SummScreen
</details>
<details open>
<summary><b>内容分析</b></summary>
- EPRSTMT
- LAMBADA
- TNEWS
</details>
</td>
<td>
<details open>
<summary><b>长文本理解</b></summary>
- LEval
- LongBench
- GovReports
- NarrativeQA
- Qasper
</details>
</td>
<td>
<details open>
<summary><b>安全</b></summary>
- CivilComments
- CrowsPairs
- CValues
- JigsawMultilingual
- TruthfulQA
</details>
<details open>
<summary><b>健壮性</b></summary>
- AdvGLUE
</details>
</td>
<td>
<details open>
<summary><b>代码</b></summary>
- HumanEval
- HumanEvalX
- MBPP
- APPs
- DS1000
</details>
</td>
</tr>
</td>
</tr>
</tbody>
</table>
详情请参阅 [官方文档](https://opencompass.readthedocs.io/zh-cn/latest/dataset_statistics.html) 的数据集统计章节。
<p align="right"><a href="#top">🔝返回顶部</a></p>
@ -452,19 +318,20 @@ python run.py --datasets ceval_ppl mmlu_ppl --hf-type base --hf-path huggyllama/
<tr valign="top">
<td>
- [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [Baichuan](https://github.com/baichuan-inc)
- [BlueLM](https://github.com/vivo-ai-lab/BlueLM)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)
- [ChatGLM3](https://github.com/THUDM/ChatGLM3-6B)
- [Gemma](https://huggingface.co/google/gemma-7b)
- [InternLM](https://github.com/InternLM/InternLM)
- [LLaMA](https://github.com/facebookresearch/llama)
- [LLaMA3](https://github.com/meta-llama/llama3)
- [Vicuna](https://github.com/lm-sys/FastChat)
- [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
- [Baichuan](https://github.com/baichuan-inc)
- [WizardLM](https://github.com/nlpxucan/WizardLM)
- [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)
- [ChatGLM3](https://github.com/THUDM/ChatGLM3-6B)
- [TigerBot](https://github.com/TigerResearch/TigerBot)
- [Qwen](https://github.com/QwenLM/Qwen)
- [BlueLM](https://github.com/vivo-ai-lab/BlueLM)
- [Gemma](https://huggingface.co/google/gemma-7b)
- [TigerBot](https://github.com/TigerResearch/TigerBot)
- [Vicuna](https://github.com/lm-sys/FastChat)
- [WizardLM](https://github.com/nlpxucan/WizardLM)
- [Yi](https://github.com/01-ai/Yi)
- ……
</td>
@ -496,7 +363,7 @@ python run.py --datasets ceval_ppl mmlu_ppl --hf-type base --hf-path huggyllama/
- [x] 主观评测
- [x] 发布主观评测榜单
- [ ] 发布主观评测数据集
- [x] 发布主观评测数据集
- [x] 长文本
- [x] 支持广泛的长文本评测集
- [ ] 发布长文本评测榜单

View File

@ -1,43 +0,0 @@
from mmengine.config import read_base
from opencompass.models import AI360GPT
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='360GPT_S2_V9',
type=AI360GPT,
path='360GPT_S2_V9',
key='xxxxxxxxxxxx',
generation_kwargs={
'temperature': 0.9,
'max_tokens': 2048,
'top_p': 0.5,
'tok_k': 0,
'repetition_penalty': 1.05,
},
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir ='./output/api_360GPT_S2_V9'

View File

@ -1,44 +0,0 @@
from mmengine.config import read_base
from opencompass.models import BaiChuan
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='Baichuan2-53B',
type=BaiChuan,
path='Baichuan2-53B',
api_key='xxxxxx',
secret_key='xxxxx',
url='xxxxx',
generation_kwargs={
'temperature': 0.3,
'top_p': 0.85,
'top_k': 5,
'with_search_enhance': False,
},
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_baichuan53b/'

View File

@ -1,42 +0,0 @@
from mmengine.config import read_base
from opencompass.models import ERNIEBot
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='erniebot',
type=ERNIEBot,
path='erniebot',
key='xxxxxx', # please give you key
secretkey='xxxxxxxxx', # please give your group_id
url='xxxxxxxxx',
generation_kwargs = {
'temperature': 0.8,
},
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8
),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_erniebot/'

View File

@ -1,44 +0,0 @@
from mmengine.config import read_base
from opencompass.models import ByteDance
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='skylark-pro-public',
type=ByteDance,
path='skylark-pro-public',
accesskey='xxxxxxx',
secretkey='xxxxxxx',
url='xxxxxx',
generation_kwargs={
'temperature': 0.7,
'top_p': 0.9,
'top_k': 0,
},
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_bytedance/'

View File

@ -1,37 +0,0 @@
from mmengine.config import read_base
from opencompass.models import MiniMax
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='minimax_abab5.5-chat',
type=MiniMax,
path='abab5.5-chat',
key='xxxxxxx', # please give you key
group_id='xxxxxxxx', # please give your group_id
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=4,
concurrent_users=4,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_minimax/'

View File

@ -1,40 +0,0 @@
from mmengine.config import read_base
from opencompass.models import MoonShot
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='moonshot-v1-32k',
type=MoonShot,
path='moonshot-v1-32k',
key='xxxxxxx',
url= 'xxxxxxxx',
system_prompt= '你是 Kimi由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。'
'你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一些涉及恐怖主义,种族歧视,'
'黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=4,
concurrent_users=4,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_moonshot/'

View File

@ -1,36 +0,0 @@
from mmengine.config import read_base
from opencompass.models import Nanbeige
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='nanbeige-plus',
type=Nanbeige,
path='nanbeige-plus',
key='xxxxxx',
query_per_second=1,
max_out_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir ='./output/nanbeige-plus'

View File

@ -1,42 +0,0 @@
from mmengine.config import read_base
from opencompass.models import PanGu
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='pangu',
type=PanGu,
path='pangu',
access_key='xxxxxx',
secret_key='xxxxxx',
url = 'xxxxxx',
# url of token sever, used for generate token, like "https://xxxxxx.myhuaweicloud.com/v3/auth/tokens",
token_url = 'xxxxxx',
# scope-project-name, used for generate token
project_name = 'xxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_pangu/'

View File

@ -1,40 +0,0 @@
from mmengine.config import read_base
from opencompass.models import Qwen
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='qwen-max',
type=Qwen,
path='qwen-max',
key='xxxxxxxxxxxxxxxx', # please give you key
generation_kwargs={
'enable_search': False,
},
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8
),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=1,
concurrent_users=1,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_qwen/'

View File

@ -1,52 +0,0 @@
from mmengine.config import read_base
from opencompass.models import SenseTime
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='nova-ptc-xl-v1',
type=SenseTime,
path='nova-ptc-xl-v1',
key='xxxxxxxxxxxxxx',
url='xxxxxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
parameters={
'temperature': 0.8,
'top_p': 0.7,
'max_new_tokens': 1024,
'repetition_penalty': 1.05,
'know_ids': [],
'stream': True,
'user': '#*#***TestUser***#*#',
'knowledge_config': {
'control_level': 'normal',
'knowledge_base_result': False,
'online_search_result': False
}
}
)
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_sensetime/'

View File

@ -1,51 +0,0 @@
from mmengine.config import read_base
from opencompass.models.xunfei_api import XunFei
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='Spark-v1-1',
type=XunFei,
appid='xxxx',
path='ws://spark-api.xf-yun.com/v1.1/chat',
api_secret = 'xxxxxxx',
api_key = 'xxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
dict(
abbr='Spark-v3-1',
type=XunFei,
appid='xxxx',
domain='generalv3',
path='ws://spark-api.xf-yun.com/v3.1/chat',
api_secret = 'xxxxxxxx',
api_key = 'xxxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_xunfei/'

View File

@ -1,48 +0,0 @@
from mmengine.config import read_base
from opencompass.models import ZhiPuAI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
# needs a special postprocessor for all
# except 'gsm8k' and 'strategyqa'
from opencompass.utils import general_eval_wrapper_postprocess
for _dataset in datasets:
if _dataset['abbr'] not in ['gsm8k', 'strategyqa']:
if hasattr(_dataset['eval_cfg'], 'pred_postprocessor'):
_dataset['eval_cfg']['pred_postprocessor']['postprocess'] = _dataset['eval_cfg']['pred_postprocessor']['type']
_dataset['eval_cfg']['pred_postprocessor']['type'] = general_eval_wrapper_postprocess
else:
_dataset['eval_cfg']['pred_postprocessor'] = {'type': general_eval_wrapper_postprocess}
models = [
dict(
abbr='chatglm_pro',
type=ZhiPuAI,
path='chatglm_pro',
key='xxxxxxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_zhipu/'

View File

@ -1,67 +0,0 @@
from mmengine.config import read_base
from opencompass.models import ZhiPuV2AI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
# needs a special postprocessor for all
# except 'gsm8k' and 'strategyqa'
from opencompass.utils import general_eval_wrapper_postprocess
for _dataset in datasets:
if _dataset['abbr'] not in ['gsm8k', 'strategyqa']:
if hasattr(_dataset['eval_cfg'], 'pred_postprocessor'):
_dataset['eval_cfg']['pred_postprocessor']['postprocess'] = _dataset['eval_cfg']['pred_postprocessor']['type']
_dataset['eval_cfg']['pred_postprocessor']['type'] = general_eval_wrapper_postprocess
else:
_dataset['eval_cfg']['pred_postprocessor'] = {'type': general_eval_wrapper_postprocess}
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(
abbr='glm4_notools',
type=ZhiPuV2AI,
path='glm-4',
key='xxxxxx',
generation_kwargs={
'tools': [
{
'type': 'web_search',
'web_search': {
'enable': False # turn off the search
}
}
]
},
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8)
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = 'outputs/api_zhipu_v2/'

View File

@ -1,22 +0,0 @@
from mmengine.config import read_base
with read_base():
from ..datasets.mmlu.mmlu_gen_4d595a import mmlu_datasets
from ..datasets.cmmlu.cmmlu_gen_c13365 import cmmlu_datasets
from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..datasets.GaokaoBench.GaokaoBench_no_subjective_gen_4c31db import GaokaoBench_datasets
from ..datasets.triviaqa.triviaqa_wiki_1shot_gen_eaf81e import triviaqa_datasets
from ..datasets.nq.nq_open_1shot_gen_01cf41 import nq_datasets
from ..datasets.race.race_gen_69ee4f import race_datasets
from ..datasets.winogrande.winogrande_5shot_gen_b36770 import winogrande_datasets
from ..datasets.hellaswag.hellaswag_10shot_gen_e42710 import hellaswag_datasets
from ..datasets.bbh.bbh_gen_2879b0 import bbh_datasets
from ..datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from ..datasets.math.math_0shot_gen_393424 import math_datasets
from ..datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import TheoremQA_datasets
from ..datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
from ..datasets.mbpp.sanitized_mbpp_gen_830460 import sanitized_mbpp_datasets
from ..datasets.gpqa.gpqa_gen_4baadb import gpqa_datasets
from ..datasets.IFEval.IFEval_gen_3321a3 import ifeval_datasets
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .IFEval_gen_3321a3 import ifeval_datasets # noqa: F401, F403

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .bbh_gen_5b92b0 import bbh_datasets # noqa: F401, F403

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .cmmlu_gen_c13365 import cmmlu_datasets # noqa: F401, F403

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .hellaswag_gen_6faab5 import hellaswag_datasets # noqa: F401, F403

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .humaneval_gen_8e312c import humaneval_datasets # noqa: F401, F403

View File

@ -1,41 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='Complete the following python code:'),
],
round=[
dict(role='HUMAN', prompt='{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='./data/humaneval/human-eval-v2-20210705.jsonl',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .math_gen_265cce import math_datasets # noqa: F401, F403

View File

@ -1,35 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess
QUERY_TEMPLATE = """
Solve the following math problem step by step. The last line of your response should be of the form ANSWER: $ANSWER (without quotes) where $ANSWER is the answer to the problem.
{problem}
Remember to put your answer on its own line after "ANSWER:", and you do not need to use a \\boxed command.
""".strip()
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024))
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator), pred_postprocessor=dict(type=math_postprocess))
math_datasets = [
dict(
type=MATHDataset,
abbr='math',
path='./data/math/math.json',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg)
]

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .mmlu_gen_4d595a import mmlu_datasets # noqa: F401, F403

View File

@ -1,96 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import CircularEvaluator
from opencompass.datasets.needlebench.atc_choice import NeedleBenchATCDataset
from opencompass.utils.text_postprocessors import first_option_postprocess
# ----------------------- Prompt Content----------------------- #
few_shot_prompts = {
'single_choice_prompts': {
'single_choice_en_reasoning': [
dict(role='HUMAN', prompt="Question: Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jessica Stewart' can trace back to in the context?\nA. Jack Burch\nB. Jessica Stewart\nC. Sharon House\nD. Carolyn Jackson\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing.\n\nTherefore, the eldest relative that 'Jessica Stewart' can trace back to in the context is Sharon House. The answer is: C"),
dict(role='HUMAN', prompt="Question: For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.Jacob Oconnor's paternal grandmother is Robert Hill. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jacob Oconnor' can trace back to in the context?\nA. Laura Holland\nB. Robert Hill\nC. Jacob Oconnor\nD. Mikayla Scott\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n-Jacob Oconnor's paternal grandmother is Robert Hill. \n- For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.\n\nTherefore, the eldest relative that 'Jacob Oconnor' can trace back to in the context is Mikayla Scott. The answer is: D"),
dict(role='HUMAN', prompt="Question: Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life.Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.Michael Martinez is not only Misty Moore's father but also Misty Moore's role model. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Barbara Fuentes' can trace back to in the context?\nA. Michael Martinez\nB. Jennifer Garcia\nC. Misty Moore\nD. Barbara Fuentes\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n- Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life. \n- Michael Martinez is not only Misty Moore's father but also Misty Moore's role model.\n- Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.\n\nTherefore, the eldest relative that 'Barbara Fuentes' can trace back to in the context is Jennifer Garcia. The answer is: B"),
dict(role='HUMAN', prompt="Question: Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.Victor Dean considers Mary Gay as their grandfather.Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.David Hernandez is Jennifer Williams's mom. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jennifer Williams' can trace back to in the context?\nA. Marcus Miller\nB. Carlos Smith\nC. Mary Gay\nD. Victor Dean\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- David Hernandez is Jennifer Williams's mom.\n- Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.\n- Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.\n- Victor Dean considers Mary Gay as their grandfather. \n- Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.\n- Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.\n\nTherefore, the eldest relative that 'Jennifer Williams' can trace back to in the context is Marcus Miller. The answer is: A"),
dict(role='HUMAN', prompt='Question: {question}'),
],
},
}
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 50, 1))
names_path = './data/needlebench/names.json'
repeats = 10
# Use Zero-Shot or not
with_few_shot = True
# Max for this dataset is 4, should be set with `with_few_shot`
few_shot_samples = 4
# Generate reasoning path or not, only for single choice
with_reasoning = True
# Use circular evaluation or not
with_circular_eval = True
needlebench_prompts = few_shot_prompts
single_choice_prompts = needlebench_prompts['single_choice_prompts']
# Set few shot prompt number
for _name in list(single_choice_prompts.keys()):
if with_few_shot:
assert few_shot_samples > 0 and few_shot_samples <= 4
single_choice_prompts[_name] = \
single_choice_prompts[_name][- few_shot_samples * 2 - 1:]
# ----------------------- Dataset Settings ----------------------- #
needlebench_datasets = []
needlebench_atc_reader_cfg = dict(input_columns=['question'],
output_column='answer')
for _name in list(single_choice_prompts.keys()):
needlebench_atc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=(single_choice_prompts[_name])),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer,),
)
needlebench_atc_eval_cfg = dict(
evaluator=dict(type=CircularEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'))
for num_needles in needle_num_list:
abbr = (f'NeedleBenchATCDataset-'
f'{num_needles}Needle-{"EN" if "en" in _name else "ZH"}')
language = 'English' if 'en' in _name else 'Chinese'
if 'reasoning' in _name:
abbr += '-Reasoning'
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'num_needles': num_needles,
'language': language,
'repeats': repeats,
'with_circular': with_circular_eval,
'reader_cfg': needlebench_atc_reader_cfg,
'infer_cfg': needlebench_atc_infer_cfg,
'eval_cfg': needlebench_atc_eval_cfg
}
needlebench_datasets.append(dataset_dict)

View File

@ -1,4 +0,0 @@
from mmengine.config import read_base
with read_base():
from .s3eval_gen_370cc2 import s3eval_datasets # noqa: F401, F40

View File

@ -1,59 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import AlignmentBenchDataset
subjective_reader_cfg = dict(
input_columns=['question', 'capability', 'ref'],
output_column='judge',
)
subjective_all_sets = [
'alignment_bench',
]
data_path ='data/subjective/alignment_bench'
subjective_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{question}'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt = """You are a helpful and precise assistant for checking the quality of the answer.\n[Question]\n{question}\n\n[The Start of Assistant 1's Answer]\n{ref}\n\n[The End of Assistant 1's Answer]\n\n[The Start of Assistant 2's Answer]\n{prediction}\n\n[The End of Assistant 2's Answer]\n\n[System]\nWe would like to request your feedback on the performance of two AI assistants in response to the user question displayed above.\nPlease rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance.\nPlease first output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment.\n\n### Response:10"""
),
]),
),
),
pred_role='BOT',
)
subjective_datasets.append(
dict(
abbr=f'{_name}',
type=AlignmentBenchDataset,
path=data_path,
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))

View File

@ -1,97 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import SubjectiveCmpDataset
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['question'],
output_column='judge',
)
subjective_all_sets = [
'alpaca_eval',
]
subjective_datasets = []
gpt4_prompt = """
I want you to create a leaderboard of different of large-language models. To do so, I will give you the instructions (prompts) given to the models, and the responses of two models. Please rank the models based on which responses would be preferred by humans. All inputs and outputs should be python dictionaries.
Here is the prompt:
{
"instruction": "{question}"
}
Here are the outputs of the models:
[
{
"model": "model_1",
"answer": "{prediction}"
},
{
"model": "model_2",
"answer": "{prediction2}"
}
]
Now please rank the models by the quality of their answers, so that the model with rank 1 has the best output. Then return a list of the model names and ranks, i.e., produce the following output:
[
{"model": <model-name>, "rank": <model-rank>},
{"model": <model-name>, "rank": <model-rank>}
]
Your response must be a valid Python dictionary and should contain nothing else because we will directly execute it in Python. Please provide the ranking that the majority of humans would give.
"""
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{question}'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='You are a helpful assistant, that ranks models by the quality of their answers.')
],
round=[
dict(
role='HUMAN',
prompt = gpt4_prompt
),
]),
),
),
pred_role='BOT',
)
subjective_datasets.append(
dict(
abbr=f'{_name}',
type=SubjectiveCmpDataset,
path='./data/subjective/alpaca_eval',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))

View File

@ -1,61 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets.subjective_cmp import SubjectiveCmpDataset
subjective_reader_cfg = dict(
input_columns=['question', 'index', 'reference_answer', 'evaluating_guidance', 'capability', 'prompt'],
output_column='judge',
train_split='test')
subjective_all_sets = [
'creation_v0.1',
]
subjective_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{question}'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
cmp_order='both',
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='{prompt}'
),
],
round=[dict(role='HUMAN',
prompt='回答 1: <回答 1 开始> {prediction} <回答 1 结束>\n回答 2: <回答 2 开始> {prediction2} <回答 2 结束>\n')]))),
pred_role='BOT',
)
subjective_datasets.append(
dict(
abbr=f'{_name}',
type=SubjectiveCmpDataset,
path='./data/subjective/',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))

View File

@ -1,25 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HFDataset
z_bench_reader_cfg = dict(
input_columns=['text'], output_column='category', train_split='test')
z_bench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{text}',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
z_bench_datasets = dict(
type=HFDataset,
path=
'/mnt/petrelfs/gaotong/llm_eval/openagieval_dataset/eval_datasets/z_bench',
data_dir=
'/mnt/petrelfs/gaotong/llm_eval/openagieval_dataset/eval_datasets/z_bench',
name='question',
reader_cfg=z_bench_reader_cfg,
infer_cfg=z_bench_infer_cfg)

View File

@ -1,28 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HFDataset
z_bench_reader_cfg = dict(
ds_size=4,
input_columns=['text'],
output_column='category',
train_split='test')
z_bench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[dict(role='HUMAN', prompt='{text}')]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
z_bench_datasets = dict(
type=HFDataset,
path=
'/mnt/petrelfs/gaotong/llm_eval/openagieval_dataset/eval_datasets/z_bench',
data_dir=
'/mnt/petrelfs/gaotong/llm_eval/openagieval_dataset/eval_datasets/z_bench',
name='question',
reader_cfg=z_bench_reader_cfg,
infer_cfg=z_bench_infer_cfg)

View File

@ -1,18 +0,0 @@
from mmengine.config import read_base
with read_base():
from .models.mistral.hf_mistral_7b_v0_1 import models as hf_mistral_7b_v0_1_model
from .models.mistral.hf_mistral_7b_v0_2 import models as hf_mistral_7b_v0_2_model
from .models.hf_internlm.hf_internlm2_20b import models as hf_internlm2_20b_model
from .models.hf_internlm.hf_internlm2_math_20b import models as hf_internlm2_math_20b_model
from .datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import TheoremQA_datasets as datasets
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
work_dir = 'outputs/TheoremQA-5shot'
# dataset version metric mode mistral-7b-v0.1-hf mistral-7b-v0.2-hf internlm2-20b-hf internlm2-math-20b-hf
# --------- --------- -------- ------ -------------------- -------------------- ------------------ -----------------------
# TheoremQA 6f0af8 score gen 18.00 16.75 25.87 30.88

View File

@ -1,11 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.ceval.ceval_gen import ceval_datasets
from .datasets.cmmlu.cmmlu_gen import cmmlu_datasets
from .datasets.agieval.agieval_gen import agieval_datasets
from .datasets.bbh.bbh_gen import bbh_datasets
from .datasets.mmlu.mmlu_gen import mmlu_datasets
from .models.alaya.alaya import models
datasets = [*bbh_datasets, *ceval_datasets, *cmmlu_datasets, *agieval_datasets, *mmlu_datasets]

View File

@ -1,16 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.lveval.lveval import LVEval_datasets as datasets
from .models.bluelm.hf_bluelm_7b_chat_32k import models
from .summarizers.lveval import summarizer
models[0][
'path'
] = '/path/to/your/huggingface_models/BlueLM-7B-Chat-32K'
models[0][
'tokenizer_path'
] = '/path/to/your/huggingface_models/BlueLM-7B-Chat-32K'
models[0]['max_seq_len'] = 32768
models[0]['generation_kwargs'] = dict(do_sample=False)
models[0]['mode'] = 'mid' # truncate in the middle

View File

@ -1,52 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.CHARM.charm_reason_gen_f8fca2 import charm_reason_datasets as datasets
from .models.hf_internlm.lmdeploy_internlm2_chat_7b import models as lmdeploy_7b_chat_model
# from models.openai.gpt_3_5_turbo_1106 import models as gpt_3_5_turbo_1106_model
# from models.openai.gpt_4_1106_preview import models as gpt_4_1106_preview_model
# from .models.chatglm.hf_chatglm3_6b_32k import models as chatglm3_6b_32k_model
# from .models.yi.hf_yi_6b_chat import models as yi_6b_chat_model
# from .models.hf_internlm.hf_internlm2_chat_7b import models as hf_internlm2_chat_7b_model
# from .models.deepseek.hf_deepseek_7b_chat import models as deepseek_7b_chat_model
# from .models.baichuan.hf_baichuan2_7b_chat import models as baichuan2_7b_chat_model # need torch 2.1
# from .models.hf_llama.hf_llama2_7b_chat import models as llama2_7b_chat_model
# from .models.vicuna.hf_vicuna_7b_v15_16k import models as vicuna_7b_v15_16k_model
# from .models.baichuan.hf_baichuan2_13b_chat import models as baichuan2_13b_chat_model # need torch 2.1
# from .models.hf_llama.hf_llama2_13b_chat import models as llama2_13b_chat_model
# from .models.vicuna.hf_vicuna_13b_v15_16k import models as vicuna_13b_v15_16k_model
# from .models.hf_internlm.hf_internlm2_chat_20b import models as hf_internlm2_chat_20b_model
# from .models.yi.hf_yi_34b_chat import models as yi_34b_chat_model
# from .models.deepseek.hf_deepseek_67b_chat import models as deepseek_67b_chat_model
# from .models.hf_llama.hf_llama2_70b_chat import models as llama2_70b_chat_model
# from .models.hf_llama.hf_llama3_8b_instruct import models as llama3_8b_instruct_model
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_70b_instruct_model
from .summarizers.charm_rea import summarizer
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
work_dir = './outputs/CHARM/chat/'
# dataset version metric mode internlm2-chat-7b-turbomind
# ------------------------------------------------------------- --------- ------------- ------ -----------------------------
# charm-reason-Direct - naive_average gen 49.51
# charm-reason-ZH-CoT - naive_average gen 61.33
# charm-reason-EN-CoT - naive_average gen 54.55
# charm-reason-XLT - naive_average gen 58.46
# charm-reason-Translate-EN - naive_average gen 56.15
# - - - -
# charm-reason-Chinese_Direct - naive_average gen 47.14
# charm-reason-Chinese_ZH-CoT - naive_average gen 58.40
# charm-reason-Chinese_EN-CoT - naive_average gen 48.31
# charm-reason-Chinese_XLT - naive_average gen 53.57
# charm-reason-Chinese_Translate-EN - naive_average gen 48.21
# charm-reason-Global_Direct - naive_average gen 51.88
# charm-reason-Global_ZH-CoT - naive_average gen 64.26
# charm-reason-Global_EN-CoT - naive_average gen 60.79
# charm-reason-Global_XLT - naive_average gen 63.36
# charm-reason-Global_Translate-EN - naive_average gen 64.10

View File

@ -1,96 +0,0 @@
from mmengine.config import read_base
from opencompass.lagent.actions.ipython_interpreter import IPythonInterpreter
from opencompass.lagent.agents.react import CIReAct, ReActProtocol
from opencompass.models.lagent import CodeAgent
from opencompass.models.openai_api import OpenAI
from opencompass.partitioners import SizePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from .datasets.CIBench.CIBench_template_gen_e6b12a import \
cibench_datasets as datasets
FORCE_STOP_PROMPT_EN = """You should directly give results based on history information."""
FEWSHOT_INSTRUCTION = """\
You are an assistant who can utilize external tools.
{tool_description}
To use a tool, please response with the following format:
```
{thought} Think what you need to solve, do you need to use tools?
{action} The tool name, should be one of [{action_names}].
{action_input} The input to the tool that you want to use.
```
The tool will give you response after your response using the following format:
```
{response} the results after call the tool.
```
Therefore DO NOT generate tool response by yourself.
Also please follow the guidelines:
1. Always use code interpreter to solve the problem.
2. The generated codes should always in a markdown code block format.
3. The generated codes will be executed in an ipython manner and the results will be cached.
4. Your responded code should always be simple and only solves the problem in current step.
For example:
File url: `xxxx`
### Step 1. Load the dataset from the url into a pandas DataFrame named `df`.
{thought} We should use `pandas` to solve this step.
{action} IPythonInterpreter
{action_input} ```python
import pandas as pd
url = "xxxx"
data = pd.read_csv(url)
```
{response} The code is succeed without any outputs.
Let us begin from here!
"""
IPYTHON_INTERPRETER_DESCRIPTION = '''\
It can run Python code in a manner as jupyter notebook. The code must be a valid code that contains only python method.'''
models = [
dict(
abbr='gpt-3.5-code',
type=CodeAgent,
agent_type=CIReAct,
max_turn=3,
llm=dict(
type=OpenAI,
path='gpt-3.5-turbo',
key='ENV',
query_per_second=1,
max_seq_len=4096,
),
actions=[
dict(type=IPythonInterpreter,
description=IPYTHON_INTERPRETER_DESCRIPTION,
user_data_dir='./data/cibench_dataset/datasources')
],
protocol=dict(
type=ReActProtocol,
call_protocol=FEWSHOT_INSTRUCTION,
force_stop=FORCE_STOP_PROMPT_EN,
finish=dict(role='FINISH', begin='Final Answer:', end='\n'),
),
batch_size=1,
use_system_role=False, # use `user` role instead of system role
first_system_role=False, # use `user` role of the first instruction prompt
merge_adjacent_role=True, # merge adjacent same user content
),
]
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000),
runner=dict(
type=LocalRunner,
max_num_workers=16,
task=dict(type=OpenICLInferTask)),
)

View File

@ -1,80 +0,0 @@
from mmengine.config import read_base
from opencompass.partitioners import SizePartitioner
from opencompass.runners import LocalRunner, SlurmRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.models import OpenAI
from opencompass.lagent.actions.ipython_interpreter import IPythonInterpreter
from opencompass.lagent.agents.react import CIReAct
from opencompass.models.lagent import CodeAgent
from lagent.agents.react import ReActProtocol
with read_base():
from .datasets.CIBench.CIBench_gen_eb42f9 import cibench_datasets as datasets
FORCE_STOP_PROMPT_EN = """You should directly give results based on history information."""
FEWSHOT_INSTRUCTION = """\
You are an assistant who can utilize external tools.
{tool_description}
To use a tool, please response with the following format:
```
{thought} Think what you need to solve, do you need to use tools?
{action} The tool name, should be one of [{action_names}].
{action_input} The input to the tool that you want to use.
```
The tool will give you response after your response using the following format:
```
{response} the results after call the tool.
```
Therefore DO NOT generate tool response by yourself.
Also please follow the guidelines:
1. Always use code interpreter to solve the problem.
2. The generated codes should always in a markdown code block format.
3. The generated codes will be executed in an ipython manner and the results will be cached.
4. Your responded code should always be simple and only solves the problem in current step.
Begin!
"""
models = [
dict(
abbr='gpt-3.5-turbo',
type=CodeAgent,
agent_type=CIReAct,
mutli_rounds=True,
max_turn=3,
llm=dict(
type=OpenAI,
path='gpt-3.5-turbo',
key='ENV',
query_per_second=1,
max_seq_len=4096,
),
actions=[
dict(
type=IPythonInterpreter,
description=
'''It can run Python code in a manner as jupyter notebook. The code must be a valid code that contains only python method.
'''),
],
protocol=dict(
type=ReActProtocol,
call_protocol=FEWSHOT_INSTRUCTION,
force_stop=FORCE_STOP_PROMPT_EN,
action=dict(role='ACTION', begin='Tool:', end='\n'),
action_input=dict(role='ARGS', begin='Tool Input:', end='\n'),
response=dict(role='RESPONSE', begin='Tool Response:', end='\n'),
finish=dict(role='FINISH', begin='Final Answer:', end='\n'),
),
batch_size=8,
),
]
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=50, gen_task_coef=1),
runner=dict(
type=SlurmRunner, max_num_workers=8, retry=2,
task=dict(type=OpenICLInferTask)),
)

View File

@ -1,91 +0,0 @@
from mmengine.config import read_base
from opencompass.datasets.circular import (CircularCEvalDataset, CircularMMLUDataset, CircularCMMLUDataset, CircularCSQADataset,
CircularARCDataset, CircularHSWAGDataset, CircularOBQADataset, CircularRaceDataset, CircularEvaluator)
from opencompass.summarizers import CircularSummarizer
with read_base():
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.cmmlu.cmmlu_gen_c13365 import cmmlu_datasets
from .datasets.hellaswag.hellaswag_gen_6faab5 import hellaswag_datasets
from .datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from .datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from .datasets.commonsenseqa.commonsenseqa_gen_1da2d0 import commonsenseqa_datasets
from .datasets.obqa.obqa_gen_9069e4 import obqa_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .models.hf_internlm.hf_internlm_chat_7b import models as hf_internlm_chat_7b_model
from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b_model
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat_model
from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat_model
from .summarizers.groups.mmlu import mmlu_summary_groups
from .summarizers.groups.cmmlu import cmmlu_summary_groups
from .summarizers.groups.ceval import ceval_summary_groups
for ds, t in [
(ceval_datasets, CircularCEvalDataset),
(mmlu_datasets, CircularMMLUDataset),
(cmmlu_datasets, CircularCMMLUDataset),
(hellaswag_datasets, CircularHSWAGDataset),
(ARC_e_datasets, CircularARCDataset),
(ARC_c_datasets, CircularARCDataset),
(commonsenseqa_datasets, CircularCSQADataset),
(obqa_datasets, CircularOBQADataset),
(race_datasets, CircularRaceDataset),
]:
for d in ds:
d['type'] = t
d['abbr'] = d['abbr'] + '-circular-4'
d['eval_cfg']['evaluator'] = {'type': CircularEvaluator, 'circular_pattern': 'circular'}
d['circular_patterns'] = 'circular'
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets') or k == 'datasets'], [])
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
# config summarizer
other_summary_groups = [
{'name': 'average',
'subsets': ['ceval', 'mmlu', 'cmmlu', 'hellaswag', 'ARC-e', 'ARC-c', 'commonsense_qa', 'openbookqa_fact', 'race-middle', 'race-high']},
]
origin_summary_groups = sum([v for k, v in locals().items() if k.endswith('_summary_groups')], [])
new_summary_groups = []
for item in origin_summary_groups:
new_summary_groups.append(
{
'name': item['name'] + '-circular-4',
'subsets': [i + '-circular-4' for i in item['subsets']],
}
)
summarizer = dict(
type=CircularSummarizer,
metric_types=['acc_origin', 'perf_circular'],
dataset_abbrs = [
'average-circular-4',
'ceval-circular-4',
'mmlu-circular-4',
'cmmlu-circular-4',
'hellaswag-circular-4',
'ARC-e-circular-4',
'ARC-c-circular-4',
'commonsense_qa-circular-4',
'openbookqa_fact-circular-4',
'race-middle-circular-4',
'race-high-circular-4',
'ceval-humanities-circular-4',
'ceval-stem-circular-4',
'ceval-social-science-circular-4',
'ceval-other-circular-4',
'mmlu-humanities-circular-4',
'mmlu-stem-circular-4',
'mmlu-social-science-circular-4',
'mmlu-other-circular-4',
'cmmlu-humanities-circular-4',
'cmmlu-stem-circular-4',
'cmmlu-social-science-circular-4',
'cmmlu-other-circular-4',
'cmmlu-china-specific-circular-4',
],
summary_groups=new_summary_groups,
)

View File

@ -1,52 +0,0 @@
from mmengine.config import read_base
from opencompass.partitioners import SizePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.models import OpenAI, HuggingFaceCausalLM
from opencompass.models.lagent import CodeAgent
with read_base():
from .datasets.math.math_gen_943d32 import math_datasets
from .datasets.gsm8k.gsm8k_gen_57b0b1 import gsm8k_datasets
datasets = []
datasets += gsm8k_datasets
datasets += math_datasets
models = [
dict(
abbr='gpt-3.5-react',
type=CodeAgent,
llm=dict(
type=OpenAI,
path='gpt-3.5-turbo',
key='ENV',
query_per_second=1,
max_seq_len=4096,
),
batch_size=8),
dict(
abbr='WizardCoder-Python-13B-V1.0-react',
type=CodeAgent,
llm=dict(
type=HuggingFaceCausalLM,
path='WizardLM/WizardCoder-Python-13B-V1.0',
tokenizer_path='WizardLM/WizardCoder-Python-13B-V1.0',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
max_seq_len=2048,
model_kwargs=dict(trust_remote_code=True, device_map='auto'),
),
batch_size=8,
run_cfg=dict(num_gpus=2, num_procs=1)),
]
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=40000),
runner=dict(
type=LocalRunner, max_num_workers=16,
task=dict(type=OpenICLInferTask)),
)

View File

@ -1,7 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.humanevalx.humanevalx_gen import humanevalx_datasets
from .models.codegeex2.hf_codegeex2_6b import models
datasets = humanevalx_datasets

View File

@ -1,15 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.ceval.ceval_clean_ppl import ceval_datasets
from .datasets.mmlu.mmlu_clean_ppl import mmlu_datasets
from .datasets.hellaswag.hellaswag_clean_ppl import hellaswag_datasets
from .datasets.ARC_c.ARC_c_clean_ppl import ARC_c_datasets
from .models.yi.hf_yi_6b import models as hf_yi_6b_model
from .models.qwen.hf_qwen_7b import models as hf_qwen_7b_model
from .models.hf_llama.hf_llama2_7b import models as hf_llama2_7b_model
from .summarizers.contamination import summarizer
datasets = [*ceval_datasets, *mmlu_datasets, *hellaswag_datasets, *ARC_c_datasets]
models = [*hf_yi_6b_model, *hf_qwen_7b_model, *hf_llama2_7b_model]

View File

@ -1,10 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.siqa.siqa_gen import siqa_datasets
from .datasets.winograd.winograd_ppl import winograd_datasets
from .models.opt.hf_opt_125m import opt125m
from .models.opt.hf_opt_350m import opt350m
datasets = [*siqa_datasets, *winograd_datasets]
models = [opt125m, opt350m]

View File

@ -1,36 +0,0 @@
from mmengine.config import read_base
from opencompass.models import OpenAI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# choose a list of datasets
from .datasets.collections.chat_medium import datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(abbr='GPT-3.5-turbo-0613',
type=OpenAI, path='gpt-3.5-turbo-0613',
key='ENV', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048, max_seq_len=4096, batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=8,
task=dict(type=OpenICLInferTask)),
)

View File

@ -1,40 +0,0 @@
from mmengine.config import read_base
from opencompass.models import OpenAI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from .datasets.collections.chat_medium import datasets
from .summarizers.medium import summarizer
# GPT4 needs a special humaneval postprocessor
from opencompass.datasets.humaneval import humaneval_gpt_postprocess
for _dataset in datasets:
if _dataset['path'] == 'openai_humaneval':
_dataset['eval_cfg']['pred_postprocessor']['type'] = humaneval_gpt_postprocess
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(abbr='GPT4',
type=OpenAI, path='gpt-4-0613',
key='ENV', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048, max_seq_len=2048, batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalRunner,
max_num_workers=4,
task=dict(type=OpenICLInferTask)),
)

View File

@ -1,18 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.mmlu.mmlu_ppl_ac766d import mmlu_datasets
from .datasets.triviaqa.triviaqa_wiki_gen_d18bf4 import triviaqa_datasets
from .datasets.nq.nq_open_gen_e93f8a import nq_datasets
from .datasets.gsm8k.gsm8k_gen_3309bd import gsm8k_datasets
from .datasets.humaneval.humaneval_gen_a82cae import humaneval_datasets
from .datasets.agieval.agieval_mixed_713d14 import agieval_datasets
from .datasets.SuperGLUE_BoolQ.SuperGLUE_BoolQ_ppl_314797 import BoolQ_datasets
from .datasets.hellaswag.hellaswag_ppl_a6e128 import hellaswag_datasets
from .datasets.obqa.obqa_ppl_6aac9e import obqa_datasets
from .datasets.winogrande.winogrande_ll_c5cf57 import winogrande_datasets
from .models.hf_llama.hf_llama2_7b import models
from .summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets') or k == 'datasets'], [])
work_dir = './outputs/llama2/'

View File

@ -1,8 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.collections.base_medium_llama import piqa_datasets, siqa_datasets
from .models.hf_llama.hf_llama_7b import models
datasets = [*piqa_datasets, *siqa_datasets]

View File

@ -1,9 +0,0 @@
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from .datasets.collections.base_medium import datasets
# choose a model of interest
from .models.internlm.internlm_7b import models
# and output the results in a choosen format
from .summarizers.medium import summarizer

View File

@ -1,37 +0,0 @@
from copy import deepcopy
from mmengine.config import read_base
with read_base():
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.agieval.agieval_gen_64afd3 import agieval_datasets
from .datasets.bbh.bbh_gen_5b92b0 import bbh_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.math.math_evaluatorv2_gen_cecb31 import math_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
from .datasets.mbpp.deprecated_sanitized_mbpp_gen_1e1056 import sanitized_mbpp_datasets
from .models.hf_internlm.hf_internlm2_chat_7b import models as hf_internlm2_chat_7b_model
from .models.hf_internlm.hf_internlm2_chat_20b import models as hf_internlm2_chat_20b_model
from .summarizers.internlm2_keyset import summarizer
work_dir = './outputs/internlm2-chat-keyset/'
_origin_datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
_origin_models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
_vanilla_datasets = [deepcopy(d) for d in _origin_datasets]
_vanilla_models = []
for m in _origin_models:
m = deepcopy(m)
if 'meta_template' in m and 'round' in m['meta_template']:
round = m['meta_template']['round']
if any(r['role'] == 'SYSTEM' for r in round):
new_round = [r for r in round if r['role'] != 'SYSTEM']
print(f'WARNING: remove SYSTEM round in meta_template for {m.get("abbr", None)}')
m['meta_template']['round'] = new_round
_vanilla_models.append(m)
datasets = _vanilla_datasets
models = _vanilla_models

View File

@ -1,20 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.mmlu.mmlu_ppl_ac766d import mmlu_datasets
from .datasets.agieval.agieval_mixed_713d14 import agieval_datasets
from .datasets.bbh.bbh_gen_5b92b0 import bbh_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.math.math_gen_265cce import math_datasets
from .datasets.humaneval.humaneval_gen_a82cae import humaneval_datasets
from .datasets.mbpp.deprecated_sanitized_mbpp_gen_1e1056 import sanitized_mbpp_datasets
from .models.hf_internlm.hf_internlm2_7b import models as hf_internlm2_7b_model
from .models.hf_internlm.hf_internlm2_20b import models as hf_internlm2_20b_model
from .summarizers.internlm2_keyset import summarizer
work_dir = './outputs/internlm2-keyset/'
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])

View File

@ -1,9 +0,0 @@
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from .datasets.collections.base_medium import datasets
# choose a model of interest
from .models.hf_internlm.hf_internlm_7b import models
# and output the results in a choosen format
from .summarizers.medium import summarizer

View File

@ -1,51 +0,0 @@
from mmengine.config import read_base
from opencompass.models.turbomind_api import TurboMindAPIModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
meta_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
internlm_chat_20b = dict(
type=TurboMindAPIModel,
abbr='internlm-chat-20b-turbomind',
api_addr='http://0.0.0.0:23333',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
internlm_chat_7b = dict(
type=TurboMindAPIModel,
abbr='internlm-chat-7b-turbomind',
api_addr='http://0.0.0.0:23333',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
meta_template=meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
models = [internlm_chat_20b]

View File

@ -1,69 +0,0 @@
from mmengine.config import read_base
from opencompass.models import LmdeployPytorchModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
meta_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='<eoh>\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
# config for internlm-chat-7b
internlm_chat_7b = dict(
type=LmdeployPytorchModel,
abbr='internlm-chat-7b-pytorch',
path='internlm/internlm-chat-7b',
engine_config=dict(session_len=2048,
max_batch_size=16),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=16,
meta_template=meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
# config for internlm-chat-20b
internlm_chat_20b = dict(
type=LmdeployPytorchModel,
abbr='internlm-chat-20b-pytorch',
path='internlm/internlm-chat-20b',
engine_config=dict(session_len=2048,
max_batch_size=8),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
models = [internlm_chat_20b]

View File

@ -1,41 +0,0 @@
from mmengine.config import read_base
from opencompass.models.lmdeploy_tis import LmdeployTisModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
eos_token_id=92542
)
models = [
dict(
type=LmdeployTisModel,
abbr='internlm-chat-20b-lmdeploy-tis',
path='internlm/internlm-chat-20b',
tis_addr='0.0.0.0:33337',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
)
]

View File

@ -1,97 +0,0 @@
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
internlm_meta_template = dict(round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
internlm2_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
eos_token_id=92542
)
# config for internlm-chat-7b
internlm_chat_7b = dict(
type=TurboMindModel,
abbr='internlm-chat-7b-turbomind',
path='internlm/internlm-chat-7b',
engine_config=dict(session_len=2048,
max_batch_size=32,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
# config for internlm-chat-7b
internlm2_chat_7b = dict(
type=TurboMindModel,
abbr='internlm2-chat-7b-turbomind',
path='internlm/internlm2-chat-7b',
engine_config=dict(session_len=2048,
max_batch_size=32,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm2_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>'
)
# config for internlm-chat-20b
internlm_chat_20b = dict(
type=TurboMindModel,
abbr='internlm-chat-20b-turbomind',
path='internlm/internlm-chat-20b',
engine_config=dict(session_len=2048,
max_batch_size=8,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<eoa>',
)
models = [internlm_chat_20b]

View File

@ -1,40 +0,0 @@
from mmengine.config import read_base
from opencompass.models.turbomind_tis import TurboMindTisModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
from .datasets.race.race_gen_69ee4f import race_datasets
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
meta_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
models = [
dict(
type=TurboMindTisModel,
abbr='internlm-chat-20b-turbomind',
path='internlm',
tis_addr='0.0.0.0:33337',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]

View File

@ -1,15 +0,0 @@
from mmengine.config import read_base
from opencompass.models.huggingface import HuggingFaceCausalLM
with read_base():
# choose a list of datasets
from .datasets.gsm8k.gsm8k_gen import gsm8k_datasets
from .datasets.math.math_gen_736506 import math_datasets
from .models.hf_internlm.hf_internlm2_chat_math_7b import models as internlm_math_chat_7b_models
from .models.hf_internlm.hf_internlm2_chat_math_20b import models as internlm_math_chat_20b_models
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
# Eval Math and GSM8k for both Internlm-Math-Chat-7B and 20b
datasets = [*math_datasets, *gsm8k_datasets]
models = [*internlm_math_chat_7b_models, *internlm_math_chat_20b_models]

View File

@ -1,55 +0,0 @@
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
# # config for internlm-7b model
internlm_7b = dict(
type=TurboMindModel,
abbr='internlm-7b-turbomind',
path='internlm/internlm-7b',
engine_config=dict(session_len=2048,
max_batch_size=32,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-20b model
internlm_20b = dict(
type=TurboMindModel,
abbr='internlm-20b-turbomind',
path='internlm/internlm-20b',
engine_config=dict(session_len=2048,
max_batch_size=8,
rope_scaling_factor=1.0),
gen_config=dict(top_k=1, top_p=0.8,
temperature=1.0,
max_new_tokens=100),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm_20b]

View File

@ -1,28 +0,0 @@
from mmengine.config import read_base
from opencompass.models.turbomind_tis import TurboMindTisModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
models = [
dict(
type=TurboMindTisModel,
abbr='internlm-chat-20b-turbomind',
path='internlm',
tis_addr='0.0.0.0:33337',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]

View File

@ -1,8 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.collections.base_medium_llama import piqa_datasets, siqa_datasets
from .models.llama.llama2_7b import models
datasets = [*piqa_datasets, *siqa_datasets]

View File

@ -1,16 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.lveval.lveval import LVEval_datasets as datasets
from .models.hf_llama.hf_llama2_7b_chat import models
from .summarizers.lveval import summarizer
models[0][
'path'
] = '/path/to/your/huggingface_models/Llama-2-7b-chat-hf'
models[0][
'tokenizer_path'
] = '/path/to/your/huggingface_models/Llama-2-7b-chat-hf'
models[0]['max_seq_len'] = 4096
models[0]['generation_kwargs'] = dict(do_sample=False)
models[0]['mode'] = 'mid' # truncate in the middle

View File

@ -1,8 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.collections.base_medium_llama import piqa_datasets, siqa_datasets
from .models.mixtral.mixtral_8x7b_32k import models
datasets = [*piqa_datasets, *siqa_datasets]

View File

@ -1,26 +0,0 @@
from mmengine.config import read_base
with read_base():
from .models.hf_internlm.lmdeploy_internlm2_chat_7b import models as internlm2_chat_7b_200k
from .models.hf_internlm.hf_internlm2_chat_7b import models as internlm2_chat_7b
# Evaluate needlebench_4k, adjust the configuration to use 8k, 32k, 128k, 200k, or 1000k if necessary.
# from .datasets.needlebench.needlebench_4k.needlebench_4k import needlebench_datasets
# from .summarizers.needlebench import needlebench_4k_summarizer as summarizer
# only eval original "needle in a haystack test" in needlebench_4k
from .datasets.needlebench.needlebench_4k.needlebench_single_4k import needlebench_zh_datasets, needlebench_en_datasets
from .summarizers.needlebench import needlebench_4k_summarizer as summarizer
# eval Ancestral Tracing Challenge(ATC)
# from .datasets.needlebench.atc.atc_choice_50 import needlebench_datasets
# from .summarizers.needlebench import atc_summarizer_50 as summarizer
datasets = sum([v for k, v in locals().items() if ('datasets' in k)], [])
for m in internlm2_chat_7b:
m['max_seq_len'] = 32768 # Ensure InternLM2-7B model can receive the full length of long texts, adjust for other models based on their supported maximum sequence length.
m['max_out_len'] = 2000 # Ensure complete responses from the model in multi-needle retrieval tasks.
models = internlm2_chat_7b
work_dir = './outputs/needlebench'

View File

@ -1,11 +0,0 @@
from mmengine.config import read_base
with read_base():
from .models.qwen.hf_qwen_7b_chat import models
from .datasets.lawbench.lawbench_zero_shot_gen_002588 import lawbench_datasets as lawbench_zero_shot_datasets
from .datasets.lawbench.lawbench_one_shot_gen_002588 import lawbench_datasets as lawbench_one_shot_datasets
from .summarizers.lawbench import summarizer
datasets = lawbench_zero_shot_datasets + lawbench_one_shot_datasets
for d in datasets:
d['infer_cfg']['inferencer']['save_every'] = 1

View File

@ -1,6 +0,0 @@
from mmengine.config import read_base
with read_base():
from .models.rwkv.rwkv5_3b import models
from .datasets.collections.base_medium_llama import datasets
from .summarizers.leaderboard import summarizer

View File

@ -1,79 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.subjective.alignbench.alignbench_judgeby_critiquellm import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature=0,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner, max_task_size=1000, mode='singlescore', models=models, judge_models=judge_models,
),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=AlignmentBenchSummarizer, judge_type='general')
work_dir = 'outputs/alignment_bench/'

View File

@ -1,104 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.subjective.alpaca_eval.alpacav1_judgeby_gpt4 import subjective_datasets as alpacav1
from .datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4 import subjective_datasets as alpacav2
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.models.openai_api import OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlpacaSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*alpacav2]
gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=2,
retry=20,
temperature=0,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner, max_task_size=1000, mode='m2n', base_models=[gpt4], compare_models=models,
infer_order='random',
judge_models=judge_models
),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
given_pred = [{'abbr':'gpt4-turbo', 'path':''}]
)
work_dir = 'outputs/alpaca/'
summarizer = dict(type=AlpacaSummarizer, judge_type='v2')

View File

@ -1,104 +0,0 @@
from opencompass.models import HuggingFaceCausalLM
from copy import deepcopy
from opencompass.models import TurboMindModel
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import ArenaHardSummarizer
with read_base():
from .datasets.subjective.arena_hard.arena_hard_compare import subjective_datasets
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|begin_of_text|>user<|end_header_id|>\n\n', end='<|eot_id|>'),
dict(role='BOT', begin='<|begin_of_text|>assistant<|end_header_id|>\n\n', end='<|eot_id|>', generate=True),
],
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='llama-3-8b-instruct-hf',
path='meta-llama/Meta-Llama-3-8B-Instruct',
model_kwargs=dict(device_map='auto'),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
),
meta_template=_meta_template,
max_out_len=4096,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
generation_kwargs={'eos_token_id': [128001, 128009]},
batch_padding=True,
)
]
datasets = [*subjective_datasets]
work_dir = 'outputs/arena_hard/'
# -------------Inferen Stage ----------------------------------------
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000000),
runner=dict(
type=LocalRunner,
max_num_workers=32,
task=dict(type=OpenICLInferTask)),
)
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=5120,
max_seq_len=9216,
batch_size=10,
retry=10,
temperature = 0,
)]
## ------------- Evaluation Configuration
gpt4_0314 = dict(
abbr='gpt4-0314',
type=OpenAI,
)
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
max_task_size=1000000,
mode='m2n',
infer_order='double',
base_models=[gpt4_0314],
compare_models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
given_pred = [{'abbr':'gpt4-0314', 'path':''}]
)
summarizer = dict(
type=ArenaHardSummarizer
)

View File

@ -1,106 +0,0 @@
from os import getenv as gv
from opencompass.models import HuggingFaceCausalLM
from mmengine.config import read_base
with read_base():
from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import CompassArenaSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=2,
retry=20,
temperature=0,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
strategy='split',
max_task_size=10000,
mode='m2n',
infer_order='double',
base_models=[gpt4],
compare_models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
given_pred = [{'abbr':'gpt4-turbo', 'path':''}]
)
work_dir = 'outputs/compass_arena_debug/'
summarizer = dict(type=CompassArenaSummarizer, summary_type='half_add')

View File

@ -1,137 +0,0 @@
from os import getenv as gv
from opencompass.models import HuggingFaceCausalLM
from mmengine.config import read_base
with read_base():
from .datasets.subjective.compassbench.compassbench_compare import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import CompassBenchSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
# -------------Inference Stage ----------------------------------------
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='internlm2-chat-7b-hf',
path='internlm/internlm2-chat-7b',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=1),
stop_words=['</s>', '<|im_end|>'],
generation_kwargs=dict(
do_sample=True,
),
)
]
datasets = [*subjective_datasets]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=SlurmSequentialRunner,
partition='llmeval',
quotatype='reserved',
max_num_workers=256,
task=dict(type=OpenICLInferTask),
),
)
gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=2,
retry=20,
temperature=0,
)]
judge_models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='internlm102b',
path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=4),
stop_words=['</s>', '<|im_end|>'],
),
dict(
type=HuggingFacewithChatTemplate,
abbr='internlm102b2',
path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=4),
stop_words=['</s>', '<|im_end|>'],
),
dict(
type=HuggingFacewithChatTemplate,
abbr='internlm102b3',
path='/mnt/petrelfs/caomaosong/backup_hwfile/100bjudge_6w_epoch1/hf',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=4),
stop_words=['</s>', '<|im_end|>'],
)
]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
strategy='split',
max_task_size=10000000,
mode='m2n',
infer_order='double',
base_models=[gpt4],
compare_models=models,
judge_models=judge_models,
),
runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
#given_pred = [{'abbr':'gpt4-turbo', 'path':''}]
)
work_dir = 'outputs/compassbench/'
summarizer = dict(type=CompassBenchSummarizer, summary_type='half_add')

View File

@ -1,77 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.subjective.creationbench.creationbench_judgeby_gpt4_withref import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import CreationBenchSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_model = dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature=0,
)
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveNaivePartitioner, mode='singlescore', models=models),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask, judge_cfg=judge_model)),
)
summarizer = dict(type=CreationBenchSummarizer, judge_type='general')
work_dir = 'outputs/creationbench/'

View File

@ -1,111 +0,0 @@
from opencompass.models import HuggingFaceCausalLM
from copy import deepcopy
from opencompass.models import TurboMindModel
from mmengine.config import read_base
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import MultiroundSummarizer
with read_base():
from .datasets.subjective.multiround.functionalmt_zh_judgeby_gpt4 import subjective_datasets
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
eos_token_id=151645,
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='qwen1.5-7b-chat-hf',
path='Qwen/Qwen1.5-7B-Chat',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=_meta_template,
pad_token_id=151645,
max_out_len=100,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
)
]
datasets = [*subjective_datasets]
work_dir = 'outputs/multiround/'
# -------------Inferen Stage ----------------------------------------
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000),
runner=dict(
type=SlurmSequentialRunner,
partition='your part',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-1106-preview',
key='',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=1024,
max_seq_len=4096,
batch_size=10,
retry=10,
temperature = 0,
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
max_task_size=1000,
mode='singlescore',
models = models,
judge_models=judge_models
),
runner=dict(
type=SlurmSequentialRunner,
partition='your part',
quotatype='auto',
max_num_workers=256,
task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(
type=MultiroundSummarizer
)

View File

@ -1,92 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.subjective.alignbench.alignbench_judgeby_critiquellm import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b-hf',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*subjective_datasets]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=SlurmSequentialRunner,
partition='llmeval',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask),
),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
type=HuggingFaceCausalLM,
abbr='pandalm-7b-v1-hf',
path='WeOpenML/PandaLM-7B-v1',
tokenizer_path='WeOpenML/PandaLM-7B-v1',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
max_out_len=512,
max_seq_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1, num_procs=1),
)]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveNaivePartitioner, mode='singlescore', models=models, judge_models=judge_models),
runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=AlignmentBenchSummarizer)
work_dir = 'outputs/pandalm'

View File

@ -1,84 +0,0 @@
from mmengine.config import read_base
with read_base():
from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import MTBenchSummarizer
api_meta_template = dict(
round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
_meta_template = dict(
round=[
dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
],
)
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceCausalLM,
abbr='qwen-7b-chat-hf',
path='Qwen/Qwen-7B-Chat',
tokenizer_path='Qwen/Qwen-7B-Chat',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
pad_token_id=151643,
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
end_str='<|im_end|>',
)
]
datasets = [*subjective_datasets]
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature=0,
)]
## single evaluation
eval = dict(
partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=MTBenchSummarizer, judge_type='single')
work_dir = 'outputs/mtbench/'

View File

@ -1,27 +0,0 @@
from opencompass.models.turbomind import TurboMindModel
models = [
dict(
type=TurboMindModel,
abbr='internlm2-20b-turbomind',
path='internlm/internlm2-20b',
engine_config=dict(
session_len=32768,
max_batch_size=32,
model_name='internlm2-20b',
tp=2,
),
gen_config=dict(
top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=2000,
),
max_out_len=2000,
max_seq_len=32768,
batch_size=32,
concurrency=8,
run_cfg=dict(num_gpus=2, num_procs=1),
)
]

View File

@ -1,23 +0,0 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='internlm2-chat-1.8b-turbomind',
path='internlm/internlm2-chat-1_8b',
engine_config=dict(
max_batch_size=16,
tp=1,
),
gen_config=dict(
top_k=1,
temperature=1e-6,
top_p=0.9,
),
max_seq_len=2048,
max_out_len=1024,
batch_size=32768,
run_cfg=dict(num_gpus=1),
stop_words=['</s>', '<|im_end|>'],
)
]

View File

@ -1,36 +0,0 @@
from opencompass.models.turbomind import TurboMindModel
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
],
)
models = [
dict(
type=TurboMindModel,
abbr='internlm2-chat-20b-turbomind',
path='internlm/internlm2-chat-20b',
meta_template=_meta_template,
engine_config=dict(
session_len=32768,
max_batch_size=32,
model_name='internlm2-chat-20b',
tp=2,
stop_words=[2, 92542],
),
gen_config=dict(
top_k=1,
top_p=0.8,
temperature=1.0,
max_new_tokens=2000,
),
max_out_len=2000,
max_seq_len=32768,
batch_size=32,
concurrency=8,
run_cfg=dict(num_gpus=2, num_procs=1),
)
]

View File

@ -1,23 +0,0 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='internlm2-chat-7b-turbomind',
path='internlm/internlm2-chat-7b',
engine_config=dict(
max_batch_size=16,
tp=1,
),
gen_config=dict(
top_k=1,
temperature=1e-6,
top_p=0.9,
),
max_seq_len=2048,
max_out_len=1024,
batch_size=32768,
run_cfg=dict(num_gpus=1),
stop_words=['</s>', '<|im_end|>'],
)
]

View File

@ -1,24 +0,0 @@
from opencompass.models import TurboMindModel
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|begin_of_text|>user<|end_header_id|>\n\n', end='<|eot_id|>'),
dict(role='BOT', begin='<|begin_of_text|>assistant<|end_header_id|>\n\n', end='<|eot_id|>', generate=True),
],
)
models = [
dict(
type=TurboMindModel,
abbr='llama-3-70b-instruct-lmdeploy',
path='meta-llama/Meta-Llama-3-70B-Instruct',
engine_config=dict(session_len=4096, max_batch_size=16, tp=4),
gen_config=dict(top_k=1, temperature=1, top_p=0.9, max_new_tokens=1024, stop_words=[128001, 128009]),
max_out_len=1024,
max_seq_len=4096,
batch_size=16,
concurrency=16,
meta_template=_meta_template,
run_cfg=dict(num_gpus=4),
)
]

Some files were not shown because too many files have changed in this diff Show More