mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
fix multi-line equation
This commit is contained in:
parent
91111ce9ec
commit
fed2df4c3e
@ -102,7 +102,7 @@ afqmc_datasets = [
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Additionally, for binary evaluation metrics (such as accuracy, pass-rate, etc.), you can also set the parameter `k` in conjunction with `n` for [G-Pass@$k$](http://arxiv.org/abs/2412.13147) evaluation. The formula for G-Pass@$k$ is: $$\text{G-Pass@}k_\tau=\mathbb{E}_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right],$$ where $n$ is the number of evaluations, and $c$ is the number of times that passed or were correct out of $n$ runs. An example configuration is as follows:
|
||||
> Additionally, for binary evaluation metrics (such as accuracy, pass-rate, etc.), you can also set the parameter `k` in conjunction with `n` for [G-Pass@ $k$ ](http://arxiv.org/abs/2412.13147) evaluation. The formula for G-Pass@$k$ is: $$ \text{G-Pass@}k_\tau=\mathbb{E}_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $$ where $n$ is the number of evaluations, and $c$ is the number of times that passed or were correct out of $n$ runs. An example configuration is as follows:
|
||||
|
||||
```python
|
||||
aime2024_datasets = [
|
||||
|
@ -101,7 +101,7 @@ afqmc_datasets = [
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> 另外,对于二值评测指标(例如accuracy,pass-rate等),还可以通过设置参数`k`配合`n`进行[G-Pass@$k$](http://arxiv.org/abs/2412.13147)评测。G-Pass@$k$计算公式为:$ \text{G-Pass@}k_\tau=\mathbb{E}_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $ 其中 $n$ 为评测次数, $c$ 为 $n$ 次运行中通过或正确的次数。配置例子如下:
|
||||
> 另外,对于二值评测指标(例如accuracy,pass-rate等),还可以通过设置参数`k`配合`n`进行[G-Pass@ $k$ ](http://arxiv.org/abs/2412.13147)评测。G-Pass@$k$计算公式为: $$\text{G-Pass@}k_\tau=\mathbb{E}_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $$ 其中 $n$ 为评测次数, $c$ 为 $n$ 次运行中通过或正确的次数。配置例子如下:
|
||||
|
||||
```python
|
||||
aime2024_datasets = [
|
||||
|
Loading…
Reference in New Issue
Block a user