[Update] Update Fullbench (#1712)

* Update JuderBench

* Support O1-style Prompts

* Update Code
This commit is contained in:
Songyang Zhang 2024-11-26 14:26:55 +08:00 committed by GitHub
parent 300adc31e8
commit f97c4eae42
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
22 changed files with 1147 additions and 14 deletions

View File

@ -47,8 +47,3 @@ for _name in subjective_all_sets:
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
))
# ds1000_eval_cfg = dict(
# evaluator=dict(type=DS1000Evaluator),
# pred_role='BOT',
# pred_postprocessor=dict(type=ds1000_postprocess),
# )

View File

@ -0,0 +1,39 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
aime2024_reader_cfg = dict(
input_columns=['question'],
output_column='answer'
)
aime2024_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nRemember to put your final answer within \\boxed{}.'),
],
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048)
)
aime2024_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2)
)
aime2024_datasets = [
dict(
abbr='aime2024',
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
infer_cfg=aime2024_infer_cfg,
eval_cfg=aime2024_eval_cfg
)
]

View File

@ -0,0 +1,96 @@
import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_multiple_choice_sets = [
'temporal_sequences',
'disambiguation_qa',
'date_understanding',
'tracking_shuffled_objects_three_objects',
'penguins_in_a_table',
'geometric_shapes',
'snarks',
'ruin_names',
'tracking_shuffled_objects_seven_objects',
'tracking_shuffled_objects_five_objects',
'logical_deduction_three_objects',
'hyperbaton',
'logical_deduction_five_objects',
'logical_deduction_seven_objects',
'movie_recommendation',
'salient_translation_error_detection',
'reasoning_about_colored_objects',
]
bbh_free_form_sets = [
'multistep_arithmetic_two',
'navigate',
'dyck_languages',
'word_sorting',
'sports_understanding',
'boolean_expressions',
'object_counting',
'formal_fallacies',
'causal_judgement',
'web_of_lies',
]
bbh_datasets = []
for _name in bbh_multiple_choice_sets:
bbh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n\nQuestion: {{input}}\n You must give your final answer by starting with 'So the answer is' "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
bbh_datasets.append(
dict(
type=BBHDataset,
path='opencompass/bbh',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))
for _name in bbh_free_form_sets:
bbh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n\nQuestion: {{input}}\n You must give your final answer by starting with 'So the answer is' "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path='opencompass/bbh',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))

View File

@ -0,0 +1,96 @@
import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_multiple_choice_sets = [
'temporal_sequences',
'disambiguation_qa',
'date_understanding',
'tracking_shuffled_objects_three_objects',
'penguins_in_a_table',
'geometric_shapes',
'snarks',
'ruin_names',
'tracking_shuffled_objects_seven_objects',
'tracking_shuffled_objects_five_objects',
'logical_deduction_three_objects',
'hyperbaton',
'logical_deduction_five_objects',
'logical_deduction_seven_objects',
'movie_recommendation',
'salient_translation_error_detection',
'reasoning_about_colored_objects',
]
bbh_free_form_sets = [
'multistep_arithmetic_two',
'navigate',
'dyck_languages',
'word_sorting',
'sports_understanding',
'boolean_expressions',
'object_counting',
'formal_fallacies',
'causal_judgement',
'web_of_lies',
]
bbh_datasets = []
for _name in bbh_multiple_choice_sets:
bbh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Question: {{input}}\n You must give your final answer by starting with 'So the answer is' "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
bbh_datasets.append(
dict(
type=BBHDataset,
path='opencompass/bbh',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))
for _name in bbh_free_form_sets:
bbh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n\nQuestion: {{input}}\n You must give your final answer by starting with 'So the answer is' "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path='opencompass/bbh',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))

View File

@ -0,0 +1,39 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CMOFibDataset, MATHEvaluator, math_postprocess_v2
cmo_fib_reader_cfg = dict(
input_columns=['question'],
output_column='answer'
)
cmo_fib_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\n你需要讲最终答案写入\\boxed{}.'),
],
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048)
)
cmo_fib_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2)
)
cmo_fib_datasets = [
dict(
abbr='cmo_fib',
type=CMOFibDataset,
path='opencompass/cmo_fib',
reader_cfg=cmo_fib_reader_cfg,
infer_cfg=cmo_fib_infer_cfg,
eval_cfg=cmo_fib_eval_cfg
)
]

View File

@ -0,0 +1,52 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GPQADataset, GPQA_Simple_Eval_postprocess, GPQAEvaluator
# openai_simple_eval prompt
align_prompt = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
gpqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer')
gpqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=align_prompt),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
gpqa_eval_cfg = dict(evaluator=dict(type=GPQAEvaluator),
pred_postprocessor=dict(type=GPQA_Simple_Eval_postprocess))
gpqa_datasets = []
gpqa_subsets = {
# 'extended': 'gpqa_extended.csv',
# 'main': 'gpqa_main.csv',
'diamond': 'gpqa_diamond.csv'
}
for split in list(gpqa_subsets.keys()):
gpqa_datasets.append(
dict(
abbr='GPQA_' + split,
type=GPQADataset,
path='./data/gpqa/',
name=gpqa_subsets[split],
reader_cfg=gpqa_reader_cfg,
infer_cfg=gpqa_infer_cfg,
eval_cfg=gpqa_eval_cfg)
)

View File

@ -0,0 +1,37 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GSM8KDataset, gsm8k_postprocess, gsm8k_dataset_postprocess, Gsm8kEvaluator
from opencompass.datasets import MATHEvaluator, math_postprocess_v2
gsm8k_reader_cfg = dict(input_columns=['question'], output_column='answer')
gsm8k_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nPlease put your final answer within \\boxed{}.'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
gsm8k_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'),
pred_postprocessor=dict(type=math_postprocess_v2),
dataset_postprocessor=dict(type=gsm8k_dataset_postprocess),
)
gsm8k_datasets = [
dict(
abbr='gsm8k',
type=GSM8KDataset,
path='opencompass/gsm8k',
reader_cfg=gsm8k_reader_cfg,
infer_cfg=gsm8k_infer_cfg,
eval_cfg=gsm8k_eval_cfg,
)
]

View File

@ -0,0 +1,38 @@
# THIS SHALL ALSO BE DEPRECATED
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalPlusEvaluator, humaneval_postprocess_v2
humaneval_plus_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_plus_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'
),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_plus_eval_cfg = dict(
evaluator=dict(type=HumanEvalPlusEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_plus_datasets = [
dict(
abbr='humaneval_plus',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_plus_reader_cfg,
infer_cfg=humaneval_plus_infer_cfg,
eval_cfg=humaneval_plus_eval_cfg)
]

View File

@ -0,0 +1,40 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalXDataset, HumanevalXEvaluator
humanevalx_reader_cfg = dict(
input_columns=['prompt'], output_column='declaration', train_split='test')
humanevalx_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024))
humanevalx_eval_cfg_dict = {
lang : dict(
evaluator=dict(
type=HumanevalXEvaluator,
language=lang,
ip_address=
'localhost', # replace to your code_eval_server ip_address, port
port=5001), # refer to https://opencompass.readthedocs.io/en/latest/advanced_guides/code_eval_service.html to launch a server
pred_role='BOT')
for lang in ['python', 'cpp', 'go', 'java', 'js'] # do not support rust now
}
# Please download the needed `xx.jsonl.gz` from
# https://github.com/THUDM/CodeGeeX2/tree/main/benchmark/humanevalx
# and move them into `data/humanevalx/` folder
humanevalx_datasets = [
dict(
type=HumanevalXDataset,
abbr=f'humanevalx-{lang}',
language=lang,
path='./data/humanevalx',
reader_cfg=humanevalx_reader_cfg,
infer_cfg=humanevalx_infer_cfg,
eval_cfg=humanevalx_eval_cfg_dict[lang])
for lang in ['python', 'cpp', 'go', 'java', 'js']
]

View File

@ -0,0 +1,165 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
LCBCodeGenerationDataset,
LCBCodeExecutionDataset,
LCBTestOutputPredictionDataset,
LCBCodeGenerationEvaluator,
LCBCodeExecutionEvaluator,
LCBTestOutputEvaluator
)
from opencompass.datasets.livecodebench import TestOutputPromptConstants
lcb_code_generation_reader_cfg = dict(
input_columns=[
'question_content',
'format_prompt',
],
# output_column='evaluation_sample',
output_column='question_id',
)
SYSTEM_MESSAGE_GENERIC = f'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
prompt_template = '### Question:\n{question_content}\n\n{format_prompt}' + \
'### Answer: (use the provided format with backticks)\n\n'
# Code Generation Tasks
lcb_code_generation_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=prompt_template
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_generation_eval_cfg = dict(
evaluator=dict(
type=LCBCodeGenerationEvaluator,
num_process_evaluate=4,
timeout=6,
release_version='release_v4',
),
pred_role='BOT',
)
LCBCodeGeneration_dataset = dict(
type=LCBCodeGenerationDataset,
abbr='lcb_code_generation_v4',
path='opencompass/code_generation_lite',
reader_cfg=lcb_code_generation_reader_cfg,
infer_cfg=lcb_code_generation_infer_cfg,
eval_cfg=lcb_code_generation_eval_cfg,
release_version='release_v4',
)
# Code Execution Dataset
lcb_code_execution_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
lcb_code_execution_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
prompt='You are an expert at Python programming, code execution, test case generation, and fuzzing.'
),
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_execution_eval_cfg = dict(
evaluator=dict(
type=LCBCodeExecutionEvaluator,
),
pred_role='BOT',
)
LCBCodeExecution_dataset = dict(
type=LCBCodeExecutionDataset,
abbr='lcb_code_execution',
path='opencompass/execution-v2',
reader_cfg=lcb_code_execution_reader_cfg,
infer_cfg=lcb_code_execution_infer_cfg,
eval_cfg=lcb_code_execution_eval_cfg,
)
# TestOuputput Dataset
lcb_test_output_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
system_prompt = 'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
lcb_test_output_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
# begin=[
# dict(
# role='SYSTEM',
# prompt=system_prompt
# ),
# ],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_test_output_eval_cfg = dict(
evaluator=dict(
type=LCBTestOutputEvaluator,
),
pred_role='BOT',
)
LCBTestOutput_dataset = dict(
type=LCBTestOutputPredictionDataset,
abbr='lcb_test_output',
path='opencompass/test_generation',
reader_cfg=lcb_test_output_reader_cfg,
infer_cfg=lcb_test_output_infer_cfg,
eval_cfg=lcb_test_output_eval_cfg,
)
LCB_datasets = [
LCBCodeGeneration_dataset,
# LCBCodeExecution_dataset,
# LCBTestOutput_dataset,
]

View File

@ -0,0 +1,165 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
LCBCodeGenerationDataset,
LCBCodeExecutionDataset,
LCBTestOutputPredictionDataset,
LCBCodeGenerationEvaluator,
LCBCodeExecutionEvaluator,
LCBTestOutputEvaluator
)
from opencompass.datasets.livecodebench import TestOutputPromptConstants
lcb_code_generation_reader_cfg = dict(
input_columns=[
'question_content',
'format_prompt',
],
# output_column='evaluation_sample',
output_column='question_id',
)
SYSTEM_MESSAGE_GENERIC = f'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
prompt_template = '### Question:\n{question_content}\n\n{format_prompt}' + \
'### Answer: (use the provided format with backticks)\n\n'
# Code Generation Tasks
lcb_code_generation_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=prompt_template
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_generation_eval_cfg = dict(
evaluator=dict(
type=LCBCodeGenerationEvaluator,
num_process_evaluate=4,
timeout=6,
release_version='release_split_v4',
),
pred_role='BOT',
)
LCBCodeGeneration_dataset = dict(
type=LCBCodeGenerationDataset,
abbr='lcb_code_generation_split_v4',
path='opencompass/code_generation_lite',
reader_cfg=lcb_code_generation_reader_cfg,
infer_cfg=lcb_code_generation_infer_cfg,
eval_cfg=lcb_code_generation_eval_cfg,
release_version='release_split_v4',
)
# Code Execution Dataset
lcb_code_execution_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
lcb_code_execution_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
prompt='You are an expert at Python programming, code execution, test case generation, and fuzzing.'
),
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_execution_eval_cfg = dict(
evaluator=dict(
type=LCBCodeExecutionEvaluator,
),
pred_role='BOT',
)
LCBCodeExecution_dataset = dict(
type=LCBCodeExecutionDataset,
abbr='lcb_code_execution',
path='opencompass/execution-v2',
reader_cfg=lcb_code_execution_reader_cfg,
infer_cfg=lcb_code_execution_infer_cfg,
eval_cfg=lcb_code_execution_eval_cfg,
)
# TestOuputput Dataset
lcb_test_output_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
system_prompt = 'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
lcb_test_output_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
# begin=[
# dict(
# role='SYSTEM',
# prompt=system_prompt
# ),
# ],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_test_output_eval_cfg = dict(
evaluator=dict(
type=LCBTestOutputEvaluator,
),
pred_role='BOT',
)
LCBTestOutput_dataset = dict(
type=LCBTestOutputPredictionDataset,
abbr='lcb_test_output',
path='opencompass/test_generation',
reader_cfg=lcb_test_output_reader_cfg,
infer_cfg=lcb_test_output_infer_cfg,
eval_cfg=lcb_test_output_eval_cfg,
)
LCB_datasets = [
LCBCodeGeneration_dataset,
# LCBCodeExecution_dataset,
# LCBTestOutput_dataset,
]

View File

@ -0,0 +1,164 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
LCBCodeGenerationDataset,
LCBCodeExecutionDataset,
LCBTestOutputPredictionDataset,
LCBCodeGenerationEvaluator,
LCBCodeExecutionEvaluator,
LCBTestOutputEvaluator
)
from opencompass.datasets.livecodebench import TestOutputPromptConstants
lcb_code_generation_reader_cfg = dict(
input_columns=[
'question_content',
'format_prompt',
],
# output_column='evaluation_sample',
output_column='question_id',
)
SYSTEM_MESSAGE_GENERIC = f'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
prompt_template = '### Question:\n{question_content}\n\n{format_prompt}' + \
'### Answer: (use the provided format with backticks)\n\n'
# Code Generation Tasks
lcb_code_generation_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=prompt_template
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_generation_eval_cfg = dict(
evaluator=dict(
type=LCBCodeGenerationEvaluator,
num_process_evaluate=4,
timeout=6,
),
pred_role='BOT',
)
LCBCodeGeneration_dataset = dict(
type=LCBCodeGenerationDataset,
abbr='lcb_code_generation_v1',
path='opencompass/code_generation_lite',
reader_cfg=lcb_code_generation_reader_cfg,
infer_cfg=lcb_code_generation_infer_cfg,
eval_cfg=lcb_code_generation_eval_cfg,
release_version='release_v1',
)
# Code Execution Dataset
lcb_code_execution_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
lcb_code_execution_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
prompt='You are an expert at Python programming, code execution, test case generation, and fuzzing.'
),
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_execution_eval_cfg = dict(
evaluator=dict(
type=LCBCodeExecutionEvaluator,
),
pred_role='BOT',
)
LCBCodeExecution_dataset = dict(
type=LCBCodeExecutionDataset,
abbr='lcb_code_execution',
path='opencompass/execution-v2',
reader_cfg=lcb_code_execution_reader_cfg,
infer_cfg=lcb_code_execution_infer_cfg,
eval_cfg=lcb_code_execution_eval_cfg,
)
# TestOuputput Dataset
lcb_test_output_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
system_prompt = 'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
lcb_test_output_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
# begin=[
# dict(
# role='SYSTEM',
# prompt=system_prompt
# ),
# ],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_test_output_eval_cfg = dict(
evaluator=dict(
type=LCBTestOutputEvaluator,
),
pred_role='BOT',
)
LCBTestOutput_dataset = dict(
type=LCBTestOutputPredictionDataset,
abbr='lcb_test_output',
path='opencompass/test_generation',
reader_cfg=lcb_test_output_reader_cfg,
infer_cfg=lcb_test_output_infer_cfg,
eval_cfg=lcb_test_output_eval_cfg,
)
LCB_datasets = [
LCBCodeGeneration_dataset,
# LCBCodeExecution_dataset,
# LCBTestOutput_dataset,
]

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, normalize_final_answer
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
)
# postprocess v2
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2),
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math_prm800k_500',
path='opencompass/math',
file_name = 'test_prm800k_500.json',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -0,0 +1,85 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, normalize_final_answer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, GaoKaoMATHEvaluator
# from opencompass.utils.model_postprocessors import naive_model_postprocess, xfinder_postprocess
from opencompass.utils.postprocessors.naive import MATH_NAVIE_PROMPT_TEMPLATE
# ----------------------------- Eval Parameters -----------------------------
## Postprocess function
post_func = 're' # 're', 'xfinder_model', 'naive_model'
## Evalute function
eval_func = 'naive_model' # 're', 'naive_model'
## Model api url
# xfinder_url = 'http://0.0.0.0:23333/v1' # for 'xFinder-qwen1505' if post_func is 'xfinder_model'
# naive_model_name = 'Qwen/Qwen2.5-72B-Instruct' # replace with your model name
naive_model_name = 'dlc_model'
# naive_model_url = [
# 'http://172.30.56.38:23001/v1',
# ] # Multi-apis for accerlation
naive_model_url = [
"http://172.30.56.38:23001/v1",
"http://172.30.8.4:23003/v1",
"http://172.30.8.14:23002/v1",
"http://172.30.48.80:23004/v1",
"http://172.30.56.132:23005/v1",
"http://172.30.16.115:23006/v1",
"http://172.30.48.82:23007/v1",
"http://172.30.24.53:23008/v1",
"http://172.30.56.141:23009/v1",
"http://172.30.8.35:23010/v1",
"http://172.30.48.85:23011/v1",
"http://172.30.16.116:23012/v1"
]
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192),
)
if post_func == 're':
pred_postprocessor = dict(type=math_postprocess_v2)
if eval_func == 're':
evaluator = dict(type=MATHEvaluator, version='v2')
elif eval_func == 'naive_model':
evaluator = dict(
type=GaoKaoMATHEvaluator,
judge_model_name=naive_model_name,
url=naive_model_url,
)
# postprocess v2
math_eval_cfg = dict(
evaluator=evaluator,
pred_postprocessor=pred_postprocessor,
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math_prm800k_500-llmjudge',
path='opencompass/math',
file_name = 'test_prm800k_500.json',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -0,0 +1,40 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import SanitizedMBPPDataset, MBPPEvaluator
sanitized_mbpp_reader_cfg = dict(input_columns=['text', 'test_list'], output_column='test_list_2')
sanitized_mbpp_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
# dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task:\nWrite a function to find the similar elements from the given two tuple lists.\nYour code should pass these tests:\n\nassert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)\nassert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)\nassert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)\n',),
# dict(role='BOT', prompt='```python\ndef similar_elements(test_tup1, test_tup2):\n res = tuple(set(test_tup1) & set(test_tup2))\n return (res)```',),
# dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task:\nWrite a python function to identify non-prime numbers.\nYour code should pass these tests:\n\nassert is_not_prime(2) == False\nassert is_not_prime(10) == True\nassert is_not_prime(35) == True\n',),
# dict(role='BOT', prompt='```python\nimport math\ndef is_not_prime(n):\n result = False\n for i in range(2,int(math.sqrt(n)) + 1):\n if n %% i == 0:\n result = True\n return result```',),
# dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task:\nWrite a function to find the largest integers from a given list of numbers using heap queue algorithm.\nYour code should pass these tests:\n\nassert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65]\nassert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75]\nassert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35]\n',),
# dict(role='BOT', prompt='```python\nimport heapq as hq\ndef heap_queue_largest(nums,n):\n largest_nums = hq.nlargest(n, nums)\n return largest_nums```',),
dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task:\n{text}\nYour code should pass these tests:\n\n{test_list}\n You should submit your final solution in the following format: ```python\n\n```',),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
sanitized_mbpp_eval_cfg = dict(evaluator=dict(type=MBPPEvaluator), pred_role='BOT')
sanitized_mbpp_datasets = [
dict(
type=SanitizedMBPPDataset,
abbr='sanitized_mbpp',
path='opencompass/sanitized_mbpp',
reader_cfg=sanitized_mbpp_reader_cfg,
infer_cfg=sanitized_mbpp_infer_cfg,
eval_cfg=sanitized_mbpp_eval_cfg,
)
]

View File

@ -47,8 +47,3 @@ for _name in subjective_all_sets:
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
))
# ds1000_eval_cfg = dict(
# evaluator=dict(type=DS1000Evaluator),
# pred_role='BOT',
# pred_postprocessor=dict(type=ds1000_postprocess),
# )

View File

@ -1,6 +1,7 @@
from .evaluator import LCBCodeExecutionEvaluator # noqa: F401, F403
from .evaluator import LCBCodeGenerationEvaluator # noqa: F401, F403
from .evaluator import LCBTestOutputEvaluator # noqa: F401, F403
from .livecodebench import CompassBenchCodeExecutionDataset # noqa: F401, F403
from .livecodebench import LCBCodeExecutionDataset # noqa: F401, F403
from .livecodebench import LCBCodeGenerationDataset # noqa: F401, F403
from .livecodebench import LCBTestOutputPredictionDataset # noqa: F401, F403

View File

@ -228,11 +228,15 @@ def codegen_metrics(
@ICL_EVALUATORS.register_module()
class LCBCodeGenerationEvaluator(BaseEvaluator):
def __init__(self, num_process_evaluate, timeout=6):
def __init__(self,
num_process_evaluate,
timeout=6,
release_version='release_v1'):
super().__init__()
self.num_process_evaluate = num_process_evaluate
self.timeout = timeout
self.dataset = LCBCodeGenerationDataset.load()['test']
self.dataset = LCBCodeGenerationDataset.load(
release_version=release_version)['test']
def score(self, predictions, references):
predictions = [[extract_code_generation(item)] for item in predictions]

View File

@ -8,7 +8,7 @@ import zlib
from dataclasses import dataclass
from enum import Enum
from datasets import DatasetDict, load_dataset
from datasets import DatasetDict, load_dataset, load_from_disk
from opencompass.utils import get_data_path # noqa: F401, F403
@ -215,3 +215,37 @@ class LCBSelfRepairDataset(BaseDataset):
dataset = dataset.map(transform)
return DatasetDict({'test': dataset, 'train': dataset})
class CompassBenchCodeExecutionDataset(BaseDataset):
@staticmethod
def load(
path: str = 'opencompass/execution-v2',
local_mode: bool = False,
cot: bool = False,
# release_version: str = "release_v1"
):
# path = get_data_path(path, local_mode=local_mode)
def transform(item):
code, input = item['code'], item['input']
prompt = make_code_execution_prompt(code, input, cot=cot)
item['prompt'] = prompt
evaluation_sample = json.dumps({
'code': item['code'],
'input': item['input'],
'output': item['output']
})
item['evaluation_sample'] = evaluation_sample
return item
path = get_data_path(path, local_mode=local_mode)
dataset = load_from_disk(path) # 'livecodebench/execution-v2'
dataset = dataset['test']
dataset = dataset.map(transform)
return DatasetDict({'test': dataset, 'train': dataset})

View File

@ -390,6 +390,7 @@ class LMTemplateParser:
elif item.get('prompt', ''): # it's a dict
prompt += last_sep + item.get('prompt', '')
last_sep = '\n'
return prompt
def _split_rounds(

View File

@ -176,7 +176,7 @@ class VOLCRunner(BaseRunner):
cmd = get_cmd()
logger = get_logger()
logger.debug(f'Running command: {cmd}')
logger.info(f'Running command: {cmd}')
out_path = task.get_log_path(file_extension='txt')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
@ -205,10 +205,17 @@ class VOLCRunner(BaseRunner):
return task_name, returncode
def _run_task(self, cmd, log_path, poll_interval):
logger = get_logger()
result = subprocess.run(cmd,
shell=True,
text=True,
capture_output=True)
logger.info(f'Command output: {result.stdout}')
if result.stderr:
logger.error(f'Command error: {result.stderr}')
logger.info(f'Return code: {result.returncode}')
pattern = r'(?<=task_id=).*(?=\n\n)'
match = re.search(pattern, result.stdout)
if match:

View File

@ -554,4 +554,8 @@ DATASETS_URL = {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/korbench.zip",
"md5": "9107597d137e7362eaf7d218ddef7a6d",
},
"subjective/judgerbench": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/judgerbench.zip",
"md5": "60d605883aa8cac9755819140ab42c6b"
}
}