Merge branch 'open-compass:main' into main

This commit is contained in:
bittersweet1999 2024-12-18 13:00:49 +08:00 committed by GitHub
commit f8f673a424
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
106 changed files with 6145 additions and 375 deletions

View File

@ -73,10 +73,10 @@ jobs:
exit 1
fi
score=$(sed -n '$p' regression_result3/*/summary/*.csv | awk -F ',' '{print $NF}')
if (( ${score%.*} >= 84 && ${score%.*} <= 87 )); then
echo "score is $score between 84 and 87"
if (( ${score%.*} >= 87 && ${score%.*} <= 89 )); then
echo "score is $score between 87 and 89"
else
echo "score is $score not between 84 and 87"
echo "score is $score not between 87 and 89"
exit 1
fi
rm -rf regression_result1 & rm -rf regression_result2 & rm -rf regression_result3

View File

@ -57,6 +57,7 @@ Just like a compass guides us on our journey, OpenCompass will guide you through
## 🚀 What's New <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2024.12.17\]** We have provided the evaluation script for the December [CompassAcademic](configs/eval_academic_leaderboard_202412.py), which allows users to easily reproduce the official evaluation results by configuring it.
- **\[2024.11.14\]** OpenCompass now offers support for a sophisticated benchmark designed to evaluate complex reasoning skills — [MuSR](https://arxiv.org/pdf/2310.16049). Check out the [demo](configs/eval_musr.py) and give it a spin! 🔥🔥🔥
- **\[2024.11.14\]** OpenCompass now supports the brand new long-context language model evaluation benchmark — [BABILong](https://arxiv.org/pdf/2406.10149). Have a look at the [demo](configs/eval_babilong.py) and give it a try! 🔥🔥🔥
- **\[2024.10.14\]** We now support the OpenAI multilingual QA dataset [MMMLU](https://huggingface.co/datasets/openai/MMMLU). Feel free to give it a try! 🔥🔥🔥

View File

@ -57,6 +57,7 @@
## 🚀 最新进展 <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2024.12.17\]** 我们提供了12月CompassAcademic学术榜单评估脚本 [CompassAcademic](configs/eval_academic_leaderboard_202412.py),你可以通过简单地配置复现官方评测结果。
- **\[2024.10.14\]** 现已支持OpenAI多语言问答数据集[MMMLU](https://huggingface.co/datasets/openai/MMMLU),欢迎尝试! 🔥🔥🔥
- **\[2024.09.19\]** 现已支持[Qwen2.5](https://huggingface.co/Qwen)(0.5B to 72B) ,可以使用多种推理后端(huggingface/vllm/lmdeploy), 欢迎尝试! 🔥🔥🔥
- **\[2024.09.05\]** 现已支持OpenAI o1 模型(`o1-mini-2024-09-12` and `o1-preview-2024-09-12`), 欢迎尝试! 🔥🔥🔥

View File

@ -1,4 +1,4 @@
from mmengine.config import read_base
with read_base():
from .lcbench_repeat10_gen_5ff288 import LCBench_datasets_repeat10 # noqa: F401, F403
from .lcbench_repeat10_gen_5ff288 import LCBench_repeat10_datasets # noqa: F401, F403

View File

@ -86,7 +86,7 @@ LC_cn_infer_cfg = dict(
LC_eval_cfg = dict(evaluator=dict(type=LCPassKEvaluator), pred_role='BOT')
LCBench_datasets_repeat10 = [
LCBench_repeat10_datasets = [
dict(
type=LCDataset,
abbr='lcbench_en_repeat10',

View File

@ -0,0 +1,169 @@
# CompassArena-SubjectiveBench (Pairwise Eval with Bradley-Terry Model)
## Introduction
The following introduction comes from the abstract of [Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference](https://arxiv.org/abs/2403.04132):
>Large Language Models (LLMs) have unlocked new capabilities and applications; however, evaluating the alignment with human preferences still poses significant challenges. To address this issue, we introduce Chatbot Arena, an open platform for evaluating LLMs based on human preferences. Our methodology employs a pairwise comparison approach and leverages input from a diverse user base through crowdsourcing. The platform has been operational for several months, amassing over 240K votes. This paper describes the platform, analyzes the data we have collected so far, and explains the tried-and-true statistical methods we are using for efficient and accurate evaluation and ranking of models. We confirm that the crowdsourced questions are sufficiently diverse and discriminating and that the crowdsourced human votes are in good agreement with those of expert raters. These analyses collectively establish a robust foundation for the credibility of Chatbot Arena. Because of its unique value and openness, Chatbot Arena has emerged as one of the most referenced LLM leaderboards, widely cited by leading LLM developers and companies.
For this dataset, we adapt the Bradley-Terry rating system from FastChat to the subjective evaluation setting, but replacing human evaluators with LLM-as-a-judge.
## Official Links
- Paper: [Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference](https://arxiv.org/abs/2403.04132)
- GitHub Repository: [FastChat](https://github.com/lm-sys/FastChat/tree/main)
## Overview and Usage
### Inference
During the inference stage, each LLM makes an inference based on the question presented (single question for single turn and an entire conversation for multi-turn).
### Evaluation
During the evaluation stage, the judge model respond with a critique and chooses the LLM with a better answer for each pair. This preference will be used later to form the "winner" response variable in the postprocessor. Note that the predictions for each model must be saved (by setting `keep_predictions=True` in the evaluator config) in order for the postporcessor to calculate style features. See this [example](`opencompass/configs/datasets/subjective/compass_arena_subjective_bench/singleturn/pairwise_bt_judge.py`) for more details.
#### Postprocessor
After evaluation by the judge model, we gather the pairwise matchups and any additional group variables (e.g. difficulty, category) in the postprocessor. Note that the LLM predictions ("prediction1" and "prediction2") must be passed on from the inference stage, otherwise, an error will be thrown.
### Summary
After inference by the judge model in the evaluation stage, we fit a Bradley-Terry model (statistical model) in order to estimate the rating and ranking of each LLM with an option to include style features and control variables on groups. The settings below control specification of the BT model as well as how results are being reported:
- `rating_system`: The rating system used. Currently only supports "bradleyterry".
- `num_bootstrap`: The number of bootstraps for estimating the confidence intervals of ratings.
- `with_control_vars`: Whether to include additional covariates (including style features and group variables) when fitting the BT model.
- `normalize_style_features`: Whether to normalize style features BEFORE fitting the BT model (implementation by FastChat). Turn this off for easier interpretation of odds ratios (when `odds_ratio==True`).
- `odds_ratio`: Whether to report odds ratios ($e^{\beta_i}$) instead of the original coefficients. See section "Estimated Coefficients of Control variables" for more explanation.
- `groups`: List of group variables to include while fitting the BT model. These must be available in the input dataset for each observation. Group variables are assumed to be categorical and one-hot encoding is automatically performed before model fitting.
### Config Files
1. Dataset configs:
- single turn: `opencompass/configs/datasets/subjective/compass_arena_subjective_bench/singleturn/pairwise_bt_judge.py`
- multi-turn: `opencompass/configs/datasets/subjective/compass_arena_subjective_bench/multiturn/pairwise_bt_judge.py`
2. Evaluation config:
- `configs/eval_compassarena_subjectivebench_bradleyterry.py`
## Evaluation Results
### Bradley-Terry Rating
The rating of each model is a scaled version of the estimated "strength" coefficients of the fitted Bradley-Terry model. We use the Elo scale with an initial rating of 1000 and a scaling factor of 400 to match the scale used in [CompassArena](https://opencompass.org.cn/arena). Furthermore, we anchor the ratings on the base model as it naturally represents the reference model we are comparing against. This is why the base model always have a rating of 1000 with a zero standard deviation.
```
dataset version base_model metric mode ranking ranking_ub model_name rating rating_q975 rating_q025 std_dev num_battles
0 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 1 1 Qwen-2.5-72B-Instruct 1000.00 1000.00 1000.00 0.00 4229
1 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 2 2 qwen2.5-32b-instruct-turbomind 926.54 941.72 908.29 8.21 1055
2 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 3 2 qwen2.5-14b-instruct-turbomind 907.23 921.08 897.09 6.68 1055
3 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 4 2 qwen2-7b-instruct-turbomind 901.99 919.06 885.95 8.44 1060
4 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 5 2 qwen2.5-7b-instruct-turbomind 893.03 910.58 877.02 8.65 1059
5 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 1 1 Qwen-2.5-72B-Instruct 1000.00 1000.00 1000.00 0.00 1127
6 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 2 2 qwen2.5-32b-instruct-turbomind 942.53 972.14 903.84 18.89 282
7 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 3 2 qwen2-7b-instruct-turbomind 940.34 974.22 895.80 21.72 282
8 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 4 2 qwen2.5-14b-instruct-turbomind 929.09 959.98 896.80 18.16 282
9 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 5 2 qwen2.5-7b-instruct-turbomind 907.07 936.71 876.88 16.87 281
```
### Estimated Coefficients of Control variables
The scale and interpretation of these numbers depend on the summarizer settings for `CompassArenaBradleyTerrySummarizer`. If `normalize_style_features` is set, the style features are the normalized relative difference between model A and B, with the following form:
$$
\text{normalize }\left(\frac{\text{feature}_A - \text{feature}_B}{\text{feature}_A + \text{feature}_B}\right)
$$
See [Does Style Matter?](https://blog.lmarena.ai/blog/2024/style-control/) for more information.
Additionally, if `odds_ratio` is set, the odds ratios are returned instead of the raw coefficients. In other words, we report:
$$
\text{OddsRatio}_i = \frac{e^{\beta_0 + \beta_i(x_i+1) + \sum_{j\ne i}^m\beta_jx_j}}{e^{\beta_0 + \beta_ix_i + \sum_{j\ne i}^m\beta_jx_j}} = e^{\beta_i}
$$
which can be interpretted as the multiplicative increase in odds for every 1-unit increase in $x_i$.
For example, the following results are reported with `normalize_style_features==False` and `odds_ratio==True`:
```
{
"singleturn": {
"Qwen-2.5-72B-Instruct": {
"sum_assistant_tokens": 6.577376545800252,
"header_count": 1.4880636137846999,
"list_count": 1.1558594451186806,
"bold_count": 1.7918326386585717,
"difficulty_Advanced": 1.0281620474711213,
"difficulty_Easy": 1.0557367496235666,
"difficulty_Medium": 1.1768581931447049,
"category_人类对齐": 0.8087074923883157,
"category_代码": 1.2717334332407775,
"category_创作": 1.0430652013278148,
"category_推理": 1.1592759054335746,
"category_日常对话": 0.979047716903164,
"category_自然语言处理": 1.006707704304149,
"category_角色扮演": 1.2296103927210726,
"category_重写": 0.7952522120597192,
"category_领域知识问答": 1.0658003517547319
}
},
"multiturn": {
"Qwen-2.5-72B-Instruct": {
"sum_assistant_tokens": 4.470153434554273,
"header_count": 1.130542616688942,
"list_count": 1.4753419673439991,
"bold_count": 1.476348454534956,
"difficulty_Advanced": 1.1668553174437737,
"difficulty_Easy": 1.142118410006132,
"difficulty_Medium": 0.9651479035385795,
"category_人类对齐": 0.9606676068409767,
"category_代码": 0.9348722519214725,
"category_创作": 1.0362490715530026,
"category_推理": 0.8546385641566406,
"category_日常对话": 1.0481269627721679,
"category_自然语言处理": 1.358391853082614,
"category_角色扮演": 1.0432636535119493,
"category_重写": 0.7398232857603452,
"category_领域知识问答": 1.4715970942932421
}
}
}
```
Example Interpretation:
- For the single turn dataset with "Qwen-2.5-72B-Instruct" as the base model, if all else stay constant, the odds of winning is 6.6 times greater for every unit increase in the relative difference (unnormalized) in response length between model A and B.
- For the multi-turn dataset with "Qwen-2.5-72B-Instruct" as the base model, if all else stay constant, the odds of winning is 26% smaller (1-0.74) for "rewrite" (重写) category questions compared to non-rewrite questions.
## Citation
```
@misc{chiang2024chatbotarenaopenplatform,
title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
year={2024},
eprint={2403.04132},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2403.04132},
}
@misc{zheng2023judging,
title={Judging LLM-as-a-judge with MT-Bench and Chatbot Arena},
author={Lianmin Zheng and Wei-Lin Chiang and Ying Sheng and Siyuan Zhuang and Zhanghao Wu and Yonghao Zhuang and Zi Lin and Zhuohan Li and Dacheng Li and Eric. P Xing and Hao Zhang and Joseph E. Gonzalez and Ion Stoica},
year={2023},
eprint={2306.05685},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```

View File

@ -0,0 +1,85 @@
from mmengine.config import read_base
from opencompass.datasets import ( # compassarena_subjectiveeval_pairwise_postprocess,
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_bradleyterry_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
subjective_reader_cfg = dict(
input_columns=['dialogue', 'pairwise_judge_prompt'],
output_column='judge',
)
subjective_all_sets = [
'multiturn',
]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_bradleyterry_multiturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{dialogue}'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=ChatInferencer, max_seq_len=8192, max_out_len=2048, infer_mode='every'
),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
pack_all_predictions=True,
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_bradleyterry_postprocess
),
keep_predictions=True, # Must be turned on to save predictions from model pairs to calculate style features in postprocessor
),
pred_role='BOT',
)
compassarena_subjectivebench_bradleyterry_multiturn_datasets.append(
dict(
abbr=f'{_name}',
type=CompassArenaSubjectiveBench,
path='./data/subjective/CompassArenaSubjectiveBench',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
mode='m2n',
infer_order='random',
base_models=qwen_2_5_72b,
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -1,40 +1,47 @@
from mmengine.config import read_base
from opencompass.datasets import (
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_pairwise_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import CompassArenaSubjectiveBench, compassarena_subjectiveeval_pairwise_postprocess
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['dialogue', 'pairwise_judge_prompt'],
output_column='judge',
)
)
subjective_all_sets = [
'multiturn',
]
qwen_2_5_72b = [dict(
abbr='Qwen-2.5-72B-Instruct',
)]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_multiturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{dialogue}'
),
]),
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{dialogue}'),
]
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=8192, max_out_len=2048, infer_mode='every'),
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=ChatInferencer, max_seq_len=8192, max_out_len=2048, infer_mode='every'
),
)
subjective_eval_cfg = dict(
evaluator=dict(
@ -44,13 +51,13 @@ for _name in subjective_all_sets:
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt = '{pairwise_judge_prompt}'
),
]),
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_pairwise_postprocess
),
dict_postprocessor=dict(type=compassarena_subjectiveeval_pairwise_postprocess),
),
pred_role='BOT',
)
@ -67,5 +74,11 @@ for _name in subjective_all_sets:
mode='m2n',
infer_order='double',
base_models=qwen_2_5_72b,
given_pred = [{'abbr':'Qwen-2.5-72B-Instruct', 'path':'./data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct'}],
))
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -0,0 +1,83 @@
from mmengine.config import read_base
from opencompass.datasets import (
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_bradleyterry_postprocess,
compassarena_subjectiveeval_pairwise_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
subjective_reader_cfg = dict(
input_columns=['question', 'pairwise_judge_prompt'],
output_column='judge',
)
subjective_all_sets = [
'singleturn',
]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_bradleyterry_singleturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_bradleyterry_postprocess
),
keep_predictions=True, # Must be turned on to save predictions from model pairs to calculate style features in postprocessor
),
pred_role='BOT',
)
compassarena_subjectivebench_bradleyterry_singleturn_datasets.append(
dict(
abbr=f'{_name}',
type=CompassArenaSubjectiveBench,
path='./data/subjective/CompassArenaSubjectiveBench',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
mode='m2n',
infer_order='random',
base_models=qwen_2_5_72b,
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -1,40 +1,45 @@
from mmengine.config import read_base
from opencompass.datasets import (
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_pairwise_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import CompassArenaSubjectiveBench, compassarena_subjectiveeval_pairwise_postprocess
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['question', 'pairwise_judge_prompt'],
output_column='judge',
)
)
subjective_all_sets = [
'singleturn',
]
qwen_2_5_72b = [dict(
abbr='Qwen-2.5-72B-Instruct',
)]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_singleturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{question}'
),
]),
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}'),
]
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
subjective_eval_cfg = dict(
evaluator=dict(
@ -43,13 +48,13 @@ for _name in subjective_all_sets:
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt = '{pairwise_judge_prompt}'
),
]),
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_pairwise_postprocess
),
dict_postprocessor=dict(type=compassarena_subjectiveeval_pairwise_postprocess),
),
pred_role='BOT',
)
@ -66,5 +71,11 @@ for _name in subjective_all_sets:
mode='m2n',
infer_order='double',
base_models=qwen_2_5_72b,
given_pred = [{'abbr':'Qwen-2.5-72B-Instruct', 'path':'./data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct'}],
))
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -149,6 +149,6 @@ for _name, _prompt in sub_map.items():
mode='m2n',
infer_order='double',
base_models=gpt4,
summarizer = dict(type=CompassArenaSummarizer, summary_type='half_add'),
summarizer = dict(type=CompassArenaSummarizer, summary_type='single'),
given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/subjective/compass_arena/gpt4-turbo'}]
))

View File

@ -105,7 +105,7 @@ for _name, _prompt in sub_map.items():
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_seq_len=4096, max_out_len=2048),
inferencer=dict(type=GenInferencer, max_seq_len=4096, max_out_len=4096),
)
subjective_eval_cfg = dict(
@ -120,7 +120,7 @@ for _name, _prompt in sub_map.items():
),
]),
),
dict_postprocessor=dict(type=compassarena_postprocess, summary_type='half_add', check_pos_bias=True),
dict_postprocessor=dict(type=compassarena_postprocess, summary_type='single', check_pos_bias=True),
),
pred_role='BOT',
)

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, max_out_len=4096, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -0,0 +1,152 @@
from mmengine.config import read_base
import os.path as osp
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.runners import LocalRunner, VOLCRunner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
#######################################################################
# PART 0 Essential Configs #
#######################################################################
with read_base():
# Datasets Part
## Core Set
# Knowledge
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_0shot_cot_gen_08c1de import (
mmlu_pro_datasets,
)
# General Reasoning
from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import (
gpqa_datasets,
)
from opencompass.configs.datasets.bbh.bbh_0shot_nocot_gen_925fc4 import (
bbh_datasets,
)
from opencompass.configs.datasets.humaneval.humaneval_openai_sample_evals_gen_159614 import (
humaneval_datasets,
)
# Instruction Following
from opencompass.configs.datasets.IFEval.IFEval_gen_3321a3 import (
ifeval_datasets,
)
from opencompass.configs.datasets.livecodebench.livecodebench_gen_6966bc import (
LCBCodeGeneration_dataset,
)
# Math
from opencompass.configs.datasets.cmo_fib.cmo_fib_gen_ace24b import (
cmo_fib_datasets,
)
from opencompass.configs.datasets.aime2024.aime2024_gen_6e39a4 import (
aime2024_datasets,
)
from opencompass.configs.datasets.math.math_prm800k_500_0shot_cot_gen import (
math_datasets,
)
# Summary Groups
from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups
from opencompass.configs.summarizers.groups.mmlu_pro import (
mmlu_pro_summary_groups,
)
# Model List
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import (
models as hf_internlm2_5_7b_chat_model,
)
#######################################################################
# PART 1 Datasets List #
#######################################################################
# datasets list for evaluation
# Only take LCB generation for evaluation
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')), []
) + [LCBCodeGeneration_dataset]
#######################################################################
# PART 2 Datset Summarizer #
#######################################################################
core_summary_groups = [
{
'name': 'core_average',
'subsets': [
['IFEval', 'Prompt-level-strict-accuracy'],
['bbh', 'naive_average'],
['math_prm800k_500', 'accuracy'],
['cmo_fib', 'accuracy'],
['aime2024', 'accuracy'],
['GPQA_diamond', 'accuracy'],
['mmlu_pro', 'naive_average'],
['openai_humaneval', 'humaneval_pass@1'],
['lcb_code_generation', 'pass@1'],
],
},
]
summarizer = dict(
dataset_abbrs=[
['core_average', 'naive_average'],
'',
'Instruction Following',
['IFEval', 'Prompt-level-strict-accuracy'],
'',
'General Reasoning',
['bbh', 'naive_average'],
['GPQA_diamond', 'accuracy'],
'',
'Math Calculation',
['math_prm800k_500', 'accuracy'],
['cmo_fib', 'accuracy'],
['aime2024', 'accuracy'],
'',
'Knowledge',
['mmlu_pro', 'naive_average'],
'',
'Code',
['openai_humaneval', 'humaneval_pass@1'],
['lcb_code_generation', 'pass@1'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
),
)
#######################################################################
# PART 3 Models List #
#######################################################################
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
#######################################################################
# PART 4 Inference/Evaluation Configuaration #
#######################################################################
# Local Runner
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(
type=LocalRunner,
max_num_workers=16,
retry=0, # Modify if needed
task=dict(type=OpenICLInferTask),
),
)
# eval with local runner
eval = dict(
partitioner=dict(type=NaivePartitioner, n=10),
runner=dict(
type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLEvalTask)
),
)
#######################################################################
# PART 5 Utils Configuaration #
#######################################################################
work_dir = './outputs/oc_academic_202412'

View File

@ -0,0 +1,73 @@
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.chinese_simpleqa.chinese_simpleqa_gen import csimpleqa_datasets
from opencompass.models.openai_api import OpenAI
from opencompass.runners import LocalRunner
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.models import HuggingFacewithChatTemplate
from opencompass.summarizers import DefaultSubjectiveSummarizer
# -------------Inference Stage ----------------------------------------
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='Qwen2.5-1.5B-Instruct',
path='Qwen/Qwen2.5-1.5B-Instruct',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
max_out_len=200,
max_seq_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = sum([v for k, v in locals().items() if ('datasets' in k)], [])
summarizer = dict(type=DefaultSubjectiveSummarizer)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
api_meta_template = dict(
round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
judge_models = [
dict(
# GPT4o
abbr='gpt-4o-0513-global',
type=OpenAI,
# gpt-4o
path='gpt-4o-0513-global',
key='xxx', # provide OPENAI_API_KEY
meta_template=api_meta_template,
query_per_second=16,
max_out_len=1000,
batch_size=8,
retry=3)
]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(type=SubjectiveNaivePartitioner, models=models, judge_models=judge_models),
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)),
)
work_dir = 'outputs/chinese_simpleqa/'

View File

@ -0,0 +1,132 @@
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.subjective.compass_arena_subjective_bench.singleturn.pairwise_bt_judge import (
compassarena_subjectivebench_bradleyterry_singleturn_datasets,
)
from opencompass.configs.datasets.subjective.compass_arena_subjective_bench.multiturn.pairwise_bt_judge import (
compassarena_subjectivebench_bradleyterry_multiturn_datasets,
)
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import (
models as lmdeploy_internlm2_5_7b_chat,
)
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import (
models as lmdeploy_internlm2_5_20b_chat,
)
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b_instruct import (
models as lmdeploy_llama3_1_8b_instruct,
)
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_70b_instruct import (
models as lmdeploy_llama3_1_70b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_0_5b_instruct import (
models as lmdeploy_qwen2_5_0_5b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_1_5b_instruct import (
models as lmdeploy_qwen2_5_1_5b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_3b_instruct import (
models as lmdeploy_qwen2_5_3b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import (
models as lmdeploy_qwen2_5_7b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_14b_instruct import (
models as lmdeploy_qwen2_5_14b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_32b_instruct import (
models as lmdeploy_qwen2_5_32b_instruct,
)
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_72b_instruct import (
models as lmdeploy_qwen2_5_72b_instruct,
)
from opencompass.configs.models.qwen.lmdeploy_qwen2_7b_instruct import (
models as lmdeploy_qwen2_7b_instruct,
)
from opencompass.models import (
HuggingFace,
HuggingFaceCausalLM,
HuggingFaceChatGLM3,
OpenAI,
TurboMindModelwithChatTemplate,
)
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_num_worker import SubjectiveNumWorkerPartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner, SlurmSequentialRunner
from opencompass.summarizers import CompassArenaBradleyTerrySummarizer
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# -------------Inference Stage ----------------------------------------
models = [
*lmdeploy_qwen2_5_14b_instruct,
*lmdeploy_qwen2_5_32b_instruct,
*lmdeploy_qwen2_5_7b_instruct,
*lmdeploy_qwen2_7b_instruct,
]
datasets = [
*compassarena_subjectivebench_bradleyterry_singleturn_datasets,
*compassarena_subjectivebench_bradleyterry_multiturn_datasets,
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(type=LocalRunner, max_num_workers=16, task=dict(type=OpenICLInferTask)),
)
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='CompassJudger-1-32B-Instruct',
path='opencompass/CompassJudger-1-32B-Instruct',
engine_config=dict(session_len=16384, max_batch_size=16, tp=4),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048),
max_seq_len=16384,
max_out_len=2048,
batch_size=16,
run_cfg=dict(num_gpus=4),
)
]
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
models=models,
judge_models=judge_models,
),
runner=dict(
type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)
),
)
## ------------- Summary Configuration
# This step fits a Bradley-Terry model (statistical model) with an option
# to include style features and control variables based on groups
# (group variables must be available in the input dataset for each observation).
summarizer = dict(
type=CompassArenaBradleyTerrySummarizer,
rating_system='bradleyterry',
num_bootstrap=100,
num_cpu=None,
with_control_vars=True,
normalize_style_features=False,
odds_ratio=True,
groups=['difficulty', 'category'],
)
work_dir = 'outputs/compassarena_subjectivebench_bradleyterry/'

View File

@ -1,4 +1,4 @@
__version__ = '0.3.7'
__version__ = '0.3.8'
def _warn_about_config_migration():

View File

@ -0,0 +1,33 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import IFEvalDataset, IFEvaluator
ifeval_reader_cfg = dict(
input_columns=['prompt'], output_column='reference')
ifeval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
ifeval_eval_cfg = dict(
evaluator=dict(type=IFEvaluator),
pred_role='BOT',
)
ifeval_datasets = [
dict(
abbr='IFEval',
type=IFEvalDataset,
path='data/ifeval/input_data.jsonl',
reader_cfg=ifeval_reader_cfg,
infer_cfg=ifeval_infer_cfg,
eval_cfg=ifeval_eval_cfg)
]

View File

@ -1,4 +1,4 @@
from mmengine.config import read_base
with read_base():
from .lcbench_repeat10_gen_5ff288 import LCBench_datasets_repeat10 # noqa: F401, F403
from .lcbench_repeat10_gen_5ff288 import LCBench_repeat10_datasets # noqa: F401, F403

View File

@ -86,7 +86,7 @@ LC_cn_infer_cfg = dict(
LC_eval_cfg = dict(evaluator=dict(type=LCPassKEvaluator), pred_role='BOT')
LCBench_datasets_repeat10 = [
LCBench_repeat10_datasets = [
dict(
type=LCDataset,
abbr='lcbench_en_repeat10',

View File

@ -0,0 +1,87 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
aime2024_reader_cfg = dict(
input_columns=['question'],
output_column='answer'
)
aime2024_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nRemember to put your final answer within \\boxed{}.'),
],
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048)
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
aime2024_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
aime2024_datasets = [
dict(
abbr='aime2024',
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
infer_cfg=aime2024_infer_cfg,
eval_cfg=aime2024_eval_cfg,
mode='singlescore',
)
]

View File

@ -0,0 +1,96 @@
import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_multiple_choice_sets = [
'temporal_sequences',
'disambiguation_qa',
'date_understanding',
'tracking_shuffled_objects_three_objects',
'penguins_in_a_table',
'geometric_shapes',
'snarks',
'ruin_names',
'tracking_shuffled_objects_seven_objects',
'tracking_shuffled_objects_five_objects',
'logical_deduction_three_objects',
'hyperbaton',
'logical_deduction_five_objects',
'logical_deduction_seven_objects',
'movie_recommendation',
'salient_translation_error_detection',
'reasoning_about_colored_objects',
]
bbh_free_form_sets = [
'multistep_arithmetic_two',
'navigate',
'dyck_languages',
'word_sorting',
'sports_understanding',
'boolean_expressions',
'object_counting',
'formal_fallacies',
'causal_judgement',
'web_of_lies',
]
bbh_datasets = []
for _name in bbh_multiple_choice_sets:
bbh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Question: {{input}}\n You must give your final answer by starting with 'So the answer is' "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
bbh_datasets.append(
dict(
type=BBHDataset,
path='opencompass/bbh',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))
for _name in bbh_free_form_sets:
bbh_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f"Question: {{input}}\n You must give your final answer by starting with 'So the answer is' "
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path='opencompass/bbh',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .bigcodebench_full_complete_gen_faf748 import bigcodebench_full_complete_datasets # noqa: F401, F403

View File

@ -0,0 +1,53 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
BigCodeBenchDataset,
BigCodeBenchEvaluator
)
bigcodebench_full_reader_cfg = dict(
input_columns=['complete_prompt'],
output_column='test',
)
bigcodebench_full_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[dict(role='system',
fallback_role='HUMAN',
prompt='')],
round=[
dict(role='HUMAN', prompt='{complete_prompt}'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
bigcodebench_full_eval_cfg = dict(
evaluator=dict(
type=BigCodeBenchEvaluator,
release_version='v0.1.2',
eval_type='complete',
remote_execute_api="https://bigcode-bigcodebench-evaluator.hf.space/",
dataset_version='full',
),
pred_role='BOT',
)
bigcodebench_full_complete_datasets = [
dict(
abbr='bigcodebench_full_complete',
type=BigCodeBenchDataset,
path="opencompass/bigcodebench",
reader_cfg=bigcodebench_full_reader_cfg,
infer_cfg=bigcodebench_full_infer_cfg,
eval_cfg=bigcodebench_full_eval_cfg,
release_version='v0.1.2'
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .bigcodebench_full_instruct_gen_8815eb import bigcodebench_full_instruct_datasets # noqa: F401, F403

View File

@ -0,0 +1,53 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
BigCodeBenchDataset,
BigCodeBenchEvaluator
)
bigcodebench_full_reader_cfg = dict(
input_columns=['instruct_prompt'],
output_column='test',
)
bigcodebench_full_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[dict(role='system',
fallback_role='HUMAN',
prompt='')],
round=[
dict(role='HUMAN', prompt='{instruct_prompt}'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192)
)
bigcodebench_full_eval_cfg = dict(
evaluator=dict(
type=BigCodeBenchEvaluator,
release_version='v0.1.2',
eval_type='instruct',
remote_execute_api="https://bigcode-bigcodebench-evaluator.hf.space/",
dataset_version='full',
),
pred_role='BOT',
)
bigcodebench_full_instruct_datasets = [
dict(
abbr='bigcodebench_full_instruct',
type=BigCodeBenchDataset,
path="opencompass/bigcodebench",
reader_cfg=bigcodebench_full_reader_cfg,
infer_cfg=bigcodebench_full_infer_cfg,
eval_cfg=bigcodebench_full_eval_cfg,
release_version='v0.1.2'
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .bigcodebench_hard_complete_gen_faf748 import bigcodebench_hard_complete_datasets # noqa: F401, F403

View File

@ -0,0 +1,54 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
BigCodeBenchDataset,
BigCodeBenchEvaluator
)
bigcodebench_hard_reader_cfg = dict(
input_columns=['complete_prompt'],
output_column='test',
)
bigcodebench_hard_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[dict(role='system',
fallback_role='HUMAN',
prompt='')],
round=[
dict(role='HUMAN', prompt='{complete_prompt}'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
bigcodebench_hard_eval_cfg = dict(
evaluator=dict(
type=BigCodeBenchEvaluator,
release_version='v0.1.2',
eval_type='complete',
remote_execute_api="https://bigcode-bigcodebench-evaluator.hf.space/",
dataset_version='hard',
),
pred_role='BOT',
)
bigcodebench_hard_complete_datasets = [
dict(
abbr='bigcodebench_hard_complete',
type=BigCodeBenchDataset,
path="opencompass/bigcodebench",
reader_cfg=bigcodebench_hard_reader_cfg,
infer_cfg=bigcodebench_hard_infer_cfg,
eval_cfg=bigcodebench_hard_eval_cfg,
release_version='v0.1.2',
dataset_version='hard',
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .bigcodebench_hard_instruct_gen_8815eb import bigcodebench_hard_instruct_datasets # noqa: F401, F403

View File

@ -0,0 +1,54 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
BigCodeBenchDataset,
BigCodeBenchEvaluator
)
bigcodebench_hard_reader_cfg = dict(
input_columns=['instruct_prompt'],
output_column='test',
)
bigcodebench_hard_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[dict(role='system',
fallback_role='HUMAN',
prompt='')],
round=[
dict(role='HUMAN', prompt='{instruct_prompt}'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192)
)
bigcodebench_hard_eval_cfg = dict(
evaluator=dict(
type=BigCodeBenchEvaluator,
release_version='v0.1.2',
eval_type='instruct',
remote_execute_api="https://bigcode-bigcodebench-evaluator.hf.space/",
dataset_version='hard',
),
pred_role='BOT',
)
bigcodebench_hard_instruct_datasets = [
dict(
abbr='bigcodebench_hard_instruct',
type=BigCodeBenchDataset,
path="opencompass/bigcodebench",
reader_cfg=bigcodebench_hard_reader_cfg,
infer_cfg=bigcodebench_hard_infer_cfg,
eval_cfg=bigcodebench_hard_eval_cfg,
release_version='v0.1.2',
dataset_version='hard',
)
]

View File

@ -0,0 +1,108 @@
# Overview
<p align="center">
🌐 <a href="https://openstellarteam.github.io/ChineseSimpleQA/" target="_blank">Website</a> • 🤗 <a href="https://huggingface.co/datasets/OpenStellarTeam/Chinese-SimpleQA" target="_blank">Hugging Face</a> • ⏬ <a href="#data" target="_blank">Data</a> • 📃 <a href="https://huggingface.co/datasets/OpenStellarTeam/Chinese-SimpleQA" target="_blank">Paper</a> • 📊 <a href="http://47.109.32.164/" target="_blank">Leaderboard</a> <br> <a href="https://github.com/OpenStellarTeam/ChineseSimpleQA/blob/master/README_zh.md"> 中文</a> | <a href="https://github.com/OpenStellarTeam/ChineseSimpleQA/blob/master/README.md">English
</p>
**Chinese SimpleQA** is the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, our benchmark covers **6 major topics** with **99 diverse subtopics**.
Please visit our [website](https://openstellarteam.github.io/ChineseSimpleQA/) or check our [paper](https://arxiv.org/abs/2411.07140) for more details.
## 💫 Instroduction
* How to solve the generative hallucination of models has always been an unsolved problem in the field of artificial intelligence (AI). In order to measure the factual correctness of language models, OpenAI recently released and open-sourced a test set called SimpleQA. We have also been paying attention to the field of factuality, which currently has problems such as outdated data, inaccurate evaluation, and incomplete coverage. For example, the knowledge evaluation sets widely used now are still CommonSenseQA, CMMLU, and C-Eval, which are multiple-choice question-based evaluation sets. **In order to further promote the research of the Chinese community on the factual correctness of models, we propose the Chinese SimpleQA**. which consists of 3000 high-quality questions spanning 6 major topics, ranging from humanities to science and engineering. Specifically, the distinct main features of our proposed Chinese SimpleQA dataset are as follows:
* 🀄**Chinese:** Our Chinese SimpleQA focuses on the Chinese language, which provides a comprehensive evaluation of the factuality abilities of existing LLMs in Chinese.
* 🍀**Diverse:** Chinese SimpleQA covers 6 topics (i.e., “Chinese Culture”, “Humanities”, “Engineering, Technology, and Applied Sciences”, “Life, Art, and Culture”, “Society”, and “Natural Science”), and these topic includes 99 fine-grained subtopics in total, which demonstrates the diversity of our Chinese SimpleQA.
* ⚡**High-quality:** We conduct a comprehensive and rigorous quality control process to ensure the quality and accuracy of our Chinese SimpleQA.
* 💡**Static:** Following SimpleQA, to preserve the evergreen property of Chinese SimpleQA, all reference answers would not change over time.
* 🗂️**Easy-to-evaluate:** Following SimpleQA, as the questions and answers are very short, the grading procedure is fast to run via existing LLMs (e.g., OpenAI API).
- Based on Chinese SimpleQA, we have conducted a comprehensive evaluation of the factual capabilities of existing LLMs. We also maintain a comprehensive leaderboard list.
- In short, we hope that Chinese SimpleQA can help developers gain a deeper understanding of the factual correctness of their models in the Chinese field, and at the same time provide an important cornerstone for their algorithm research, and jointly promote the growth of Chinese basic models.
## 📊 Leaderboard
详见: [📊](http://47.109.32.164/)
## ⚖️ Evals
We provide three evaluation methods.
(1) The first method is based on simple-evals evaluation. The startup command is as follows:
```bash
python -m simple-evals.demo
```
This will launch evaluations through the OpenAI API.
(2) The second is a simple single evaluation script that we wrote from scratch. The startup command is as follows:
- Step1: set your openai key in scripts/chinese_simpleqa_easy.py:
```
os.environ["OPENAI_API_KEY"] = "replace your key here"
```
- Step2: run the eval script:
```
python scripts/chinese_simpleqa_easy.py
```
- Step3: we also provide a unified processing script for multiple model results. After running it, you can get a complete leaderboard:
```
python scripts/get_leaderboard.py
```
(3) We also integrated our Chinese SimpleQA benchmark into our forked [OpenCompass](https://github.com/open-compass/opencompass). You can refer to the opencompass configuration script for evaluation
- Step1: git clone Opencompass:
```shell
cd ~
git clone git@github.com:open-compass/opencompass.git
cd opencompass
```
- Step2: download Chinese Simpleqa data from [huggingface](https://huggingface.co/datasets/OpenStellarTeam/Chinese-SimpleQA), and put it in the following path(OPENCOMPASS_PATH/data/chinese_simpleqa), make sure you get path like this:
```
~/opencompass/data/
└── chinese_simpleqa
├── chinese_simpleqa.jsonl
```
- Step3: configuration your launch in configs/eval_chinese_simpleqa.py, set your models to be evaluated, set your judge model (we recommend to use gpt4o) and launch it!
```
python run.py configs/eval_chinese_simpleqa.py
```
## Citation
Please cite our paper if you use our dataset.
```
@misc{he2024chinesesimpleqachinesefactuality,
title={Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models},
author={Yancheng He and Shilong Li and Jiaheng Liu and Yingshui Tan and Weixun Wang and Hui Huang and Xingyuan Bu and Hangyu Guo and Chengwei Hu and Boren Zheng and Zhuoran Lin and Xuepeng Liu and Dekai Sun and Shirong Lin and Zhicheng Zheng and Xiaoyong Zhu and Wenbo Su and Bo Zheng},
year={2024},
eprint={2411.07140},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.07140},
}
```

View File

@ -0,0 +1,59 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import CsimpleqaDataset, csimpleqa_postprocess
subjective_reader_cfg = dict(input_columns=['primary_category', 'question','gold_ans', 'messages', 'system_prompt','prompt_template'], output_column='judge')
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{question}'
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='{system_prompt}')
],
round=[
dict(
role='HUMAN',
prompt = '{prompt_template}'
),
]
),
),
dict_postprocessor=dict(type=csimpleqa_postprocess),
),
pred_role='BOT',
)
csimpleqa_datasets = [
dict(
abbr='chinese_simpleqa',
type=CsimpleqaDataset,
name="chinese_simpleqa",
path='opencompass/chinese_simpleqa',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
mode='singlescore',
)
]

View File

@ -0,0 +1,173 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CMMLUDataset
from opencompass.utils.text_postprocessors import match_answer_pattern
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
cmmlu_subject_mapping = {
'agronomy': '农学',
'anatomy': '解剖学',
'ancient_chinese': '古汉语',
'arts': '艺术学',
'astronomy': '天文学',
'business_ethics': '商业伦理',
'chinese_civil_service_exam': '中国公务员考试',
'chinese_driving_rule': '中国驾驶规则',
'chinese_food_culture': '中国饮食文化',
'chinese_foreign_policy': '中国外交政策',
'chinese_history': '中国历史',
'chinese_literature': '中国文学',
'chinese_teacher_qualification': '中国教师资格',
'clinical_knowledge': '临床知识',
'college_actuarial_science': '大学精算学',
'college_education': '大学教育学',
'college_engineering_hydrology': '大学工程水文学',
'college_law': '大学法律',
'college_mathematics': '大学数学',
'college_medical_statistics': '大学医学统计',
'college_medicine': '大学医学',
'computer_science': '计算机科学',
'computer_security': '计算机安全',
'conceptual_physics': '概念物理学',
'construction_project_management': '建设工程管理',
'economics': '经济学',
'education': '教育学',
'electrical_engineering': '电气工程',
'elementary_chinese': '小学语文',
'elementary_commonsense': '小学常识',
'elementary_information_and_technology': '小学信息技术',
'elementary_mathematics': '初等数学',
'ethnology': '民族学',
'food_science': '食品科学',
'genetics': '遗传学',
'global_facts': '全球事实',
'high_school_biology': '高中生物',
'high_school_chemistry': '高中化学',
'high_school_geography': '高中地理',
'high_school_mathematics': '高中数学',
'high_school_physics': '高中物理学',
'high_school_politics': '高中政治',
'human_sexuality': '人类性行为',
'international_law': '国际法学',
'journalism': '新闻学',
'jurisprudence': '法理学',
'legal_and_moral_basis': '法律与道德基础',
'logical': '逻辑学',
'machine_learning': '机器学习',
'management': '管理学',
'marketing': '市场营销',
'marxist_theory': '马克思主义理论',
'modern_chinese': '现代汉语',
'nutrition': '营养学',
'philosophy': '哲学',
'professional_accounting': '专业会计',
'professional_law': '专业法学',
'professional_medicine': '专业医学',
'professional_psychology': '专业心理学',
'public_relations': '公共关系',
'security_study': '安全研究',
'sociology': '社会学',
'sports_science': '体育学',
'traditional_chinese_medicine': '中医中药',
'virology': '病毒学',
'world_history': '世界历史',
'world_religions': '世界宗教'
}
QUERY_TEMPLATE = """
你回答的最后一行**必须**是以下格式 '答案: $选项' (不带引号), 其中选项是ABCD之一.
{question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
cmmlu_all_sets = list(cmmlu_subject_mapping.keys())
cmmlu_datasets = []
for _name in cmmlu_all_sets:
_ch_name = cmmlu_subject_mapping[_name]
prompt_prefix = f'请回答以下关于{_ch_name}的单项选择题, '
cmmlu_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=prompt_prefix+QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
cmmlu_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
cmmlu_datasets.append(
dict(
type=CMMLUDataset,
path='opencompass/cmmlu',
name=_name,
abbr=f'cmmlu-{_name}',
reader_cfg=dict(
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split='test'),
infer_cfg=cmmlu_infer_cfg,
eval_cfg=cmmlu_eval_cfg,
mode='singlescore',
))
del _name, _ch_name

View File

@ -0,0 +1,123 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CMMLUDataset
from opencompass.utils.text_postprocessors import match_answer_pattern
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
cmmlu_subject_mapping = {
'anatomy': '解剖学',
'astronomy': '天文学',
'college_actuarial_science': '大学精算学',
'college_engineering_hydrology': '大学工程水文学',
'college_mathematics': '大学数学',
'college_medical_statistics': '大学医学统计',
'computer_science': '计算机科学',
'conceptual_physics': '概念物理学',
'electrical_engineering': '电气工程',
'elementary_mathematics': '初等数学',
'genetics': '遗传学',
'high_school_biology': '高中生物',
'high_school_chemistry': '高中化学',
'high_school_mathematics': '高中数学',
'high_school_physics': '高中物理学',
'machine_learning': '机器学习',
'virology': '病毒学',
}
QUERY_TEMPLATE = """
你回答的最后一行**必须**是以下格式 '答案: $选项' (不带引号), 其中选项是ABCD之一.
{question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
cmmlu_all_sets = list(cmmlu_subject_mapping.keys())
cmmlu_datasets = []
for _name in cmmlu_all_sets:
_ch_name = cmmlu_subject_mapping[_name]
prompt_prefix = f'请回答以下关于{_ch_name}的单项选择题, '
cmmlu_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=prompt_prefix+QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
cmmlu_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
cmmlu_datasets.append(
dict(
type=CMMLUDataset,
path='opencompass/cmmlu',
name=_name,
abbr=f'cmmlu-{_name}',
reader_cfg=dict(
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split='test'),
infer_cfg=cmmlu_infer_cfg,
eval_cfg=cmmlu_eval_cfg,
mode='singlescore',
))
del _name, _ch_name

View File

@ -0,0 +1,101 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GPQADataset, GPQA_Simple_Eval_postprocess, GPQAEvaluator
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
# openai_simple_eval prompt
align_prompt = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
gpqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer')
gpqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=align_prompt),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
gpqa_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
gpqa_datasets = []
gpqa_subsets = {
# 'extended': 'gpqa_extended.csv',
# 'main': 'gpqa_main.csv',
'diamond': 'gpqa_diamond.csv'
}
for split in list(gpqa_subsets.keys()):
gpqa_datasets.append(
dict(
abbr='GPQA_' + split,
type=GPQADataset,
path='./data/gpqa/',
name=gpqa_subsets[split],
reader_cfg=gpqa_reader_cfg,
infer_cfg=gpqa_infer_cfg,
eval_cfg=gpqa_eval_cfg,
mode='singlescore',
)
)

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v3
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=8192))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v3),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval_o1_style',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -0,0 +1,41 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalXDataset, HumanevalXEvaluator
humanevalx_reader_cfg = dict(
input_columns=['prompt'], output_column='declaration', train_split='test')
humanevalx_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalx_eval_cfg_dict = {
lang : dict(
evaluator=dict(
type=HumanevalXEvaluator,
language=lang,
ip_address=
'localhost', # replace to your code_eval_server ip_address, port
port=5001), # refer to https://opencompass.readthedocs.io/en/latest/advanced_guides/code_eval_service.html to launch a server
pred_role='BOT')
for lang in ['python', 'cpp', 'go', 'java', 'js'] # do not support rust now
}
# Please download the needed `xx.jsonl.gz` from
# https://github.com/THUDM/CodeGeeX2/tree/main/benchmark/humanevalx
# and move them into `data/humanevalx/` folder
humanevalx_datasets = [
dict(
type=HumanevalXDataset,
abbr=f'humanevalx-{lang}',
language=lang,
path='./data/humanevalx',
reader_cfg=humanevalx_reader_cfg,
infer_cfg=humanevalx_infer_cfg,
eval_cfg=humanevalx_eval_cfg_dict[lang])
for lang in ['python', 'cpp', 'go', 'java', 'js']
]

View File

@ -50,7 +50,7 @@ for category in categories:
abbr=f"korbench_mixed_{category}",
path="opencompass/korbench",
category=category,
mode='mixed',
prompt_mode='mixed',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,

View File

@ -50,7 +50,7 @@ for category in categories:
type=korbenchDataset,
abbr=f"korbench_{category}",
path="opencompass/korbench",
mode='0_shot',
prompt_mode='0_shot',
category=category,
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,

View File

@ -0,0 +1,109 @@
from opencompass.datasets.korbench.korbench import korbenchDataset, korbenchEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
categories = ["cipher", "counterfactual", "logic", "operation", "puzzle"]
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{prompt}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
korbench_0shot_single_datasets = []
for category in categories:
# Prompt template
prompt_template = dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role="HUMAN",
prompt=""
)
],
round=[
dict(
role="HUMAN",
prompt="{prompt}" # f-string
)
]
)
)
# Reader configuration
reader_cfg = dict(
input_columns=["prompt"],
output_column="answer",
)
# Inference configuration
infer_cfg = dict(
prompt_template=prompt_template,
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
# Dataset
korbench_dataset = dict(
type=korbenchDataset,
abbr=f"korbench_{category}",
path="opencompass/korbench",
prompt_mode='0_shot',
category=category,
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
mode='singlescore',
)
korbench_0shot_single_datasets.append(korbench_dataset)

View File

@ -1,4 +1,7 @@
from opencompass.datasets.korbench.korbench import korbenchDataset, korbenchEvaluator
from opencompass.datasets.korbench.korbench import (
korbenchDataset,
korbenchEvaluator,
)
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
@ -13,19 +16,9 @@ for category in categories:
prompt_template = dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role="HUMAN",
prompt=""
)
],
round=[
dict(
role="HUMAN",
prompt="{prompt}" # f-string
)
]
)
begin=[dict(role="HUMAN", prompt="")],
round=[dict(role="HUMAN", prompt="{prompt}")], # f-string
),
)
# Reader configuration
@ -51,7 +44,7 @@ for category in categories:
type=korbenchDataset,
abbr=f"korbench_{category}",
path="opencompass/korbench",
mode='3_shot',
prompt_mode='3_shot',
category=category,
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,

View File

@ -0,0 +1,165 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
LCBCodeGenerationDataset,
LCBCodeExecutionDataset,
LCBTestOutputPredictionDataset,
LCBCodeGenerationEvaluator,
LCBCodeExecutionEvaluator,
LCBTestOutputEvaluator
)
from opencompass.datasets.livecodebench import TestOutputPromptConstants
lcb_code_generation_reader_cfg = dict(
input_columns=[
'question_content',
'format_prompt',
],
# output_column='evaluation_sample',
output_column='question_id',
)
SYSTEM_MESSAGE_GENERIC = f'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
prompt_template = '### Question:\n{question_content}\n\n{format_prompt}' + \
'### Answer: (use the provided format with backticks)\n\n'
# Code Generation Tasks
lcb_code_generation_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=prompt_template
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_generation_eval_cfg = dict(
evaluator=dict(
type=LCBCodeGenerationEvaluator,
num_process_evaluate=4,
timeout=6,
release_version='release_split_v4',
extractor_version='v2',
),
pred_role='BOT',
)
LCBCodeGeneration_dataset = dict(
type=LCBCodeGenerationDataset,
abbr='lcb_code_generation_split_v4',
path='opencompass/code_generation_lite',
reader_cfg=lcb_code_generation_reader_cfg,
infer_cfg=lcb_code_generation_infer_cfg,
eval_cfg=lcb_code_generation_eval_cfg,
release_version='release_split_v4',
)
# Code Execution Dataset
lcb_code_execution_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
lcb_code_execution_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
prompt='You are an expert at Python programming, code execution, test case generation, and fuzzing.',
fallback_role='HUMAN',
),
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_code_execution_eval_cfg = dict(
evaluator=dict(
type=LCBCodeExecutionEvaluator,
),
pred_role='BOT',
)
LCBCodeExecution_dataset = dict(
type=LCBCodeExecutionDataset,
abbr='lcb_code_execution',
path='opencompass/execution-v2',
reader_cfg=lcb_code_execution_reader_cfg,
infer_cfg=lcb_code_execution_infer_cfg,
eval_cfg=lcb_code_execution_eval_cfg,
)
# TestOuputput Dataset
lcb_test_output_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
system_prompt = 'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
lcb_test_output_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
# begin=[
# dict(
# role='SYSTEM',
# prompt=system_prompt
# ),
# ],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024)
)
lcb_test_output_eval_cfg = dict(
evaluator=dict(
type=LCBTestOutputEvaluator,
),
pred_role='BOT',
)
LCBTestOutput_dataset = dict(
type=LCBTestOutputPredictionDataset,
abbr='lcb_test_output',
path='opencompass/test_generation',
reader_cfg=lcb_test_output_reader_cfg,
infer_cfg=lcb_test_output_infer_cfg,
eval_cfg=lcb_test_output_eval_cfg,
)
LCB_datasets = [
LCBCodeGeneration_dataset,
]

View File

@ -4,12 +4,14 @@
| dataset | language | #single-choice | #multiple-choice | #fill-in-the-blank | #problem-solving |
| -- | -- | -- | -- | -- | -- |
| AIMC | cn | 46 | 0 | 0 | 0 |
| AIMC | en | 46 | 0 | 0 | 0 |
| CEE | cn | 28 | 9 | 13 | 3 |
| CEE | en | 28 | 9 | 13 | 3 |
| AIMC | cn | 0 | 0 | 0 | 46 |
| AIMC | en | 0 | 0 | 0 | 46 |
| CEE | cn | 0 | 0 | 13 | 40 |
| CEE | en | 0 | 0 | 13 | 40 |
| CMO | cn | 0 | 0 | 0 | 18 |
| CMO | en | 0 | 0 | 0 | 18 |
| MATH500 | en | 0 | 0 | 0 | 500 |
| AIME2024 | en | 0 | 0 | 0 | 44 |
## How to use
@ -23,6 +25,7 @@ with read_base():
livemathbench_datasets[0].update(
{
'abbr': 'livemathbench_${k}x${n}'
'path': '/path/to/data/dir',
'k': 'k@pass', # the max value of k in k@pass
'n': 'number of runs', # number of runs

View File

@ -0,0 +1,49 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.livemathbench import LiveMathBenchDataset, LiveMathBenchEvaluator
livemathbench_reader_cfg = dict(
input_columns=['prompt'],
output_column='answer'
)
livemathbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{prompt}'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=GenInferencer,
max_out_len=8192,
temperature=1.0
)
)
livemathbench_eval_cfg = dict(
evaluator=dict(
type=LiveMathBenchEvaluator,
model_name='Qwen/Qwen2.5-72B-Instruct',
url=['http://172.30.40.154:23333/v1/'] #'https://api.openai.com/v1/'
)
)
livemathbench_datasets = [
dict(
type=LiveMathBenchDataset,
abbr='LiveMathBench-k1-n1',
path='opencompass/LiveMathBench202412',
k=1, # K@Pass
n=1, # Run times
reader_cfg=livemathbench_reader_cfg,
infer_cfg=livemathbench_infer_cfg,
eval_cfg=livemathbench_eval_cfg
)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .livereasonbench_gen_0283c3 import simpleqa_datasets # noqa: F401, F403

View File

@ -0,0 +1,136 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
# from opencompass.datasets import SimpleQADataset, simpleqa_postprocess
from opencompass.datasets import LiveReasonBenchDataset, livereasonbench_postprocess
GRADER_TEMPLATE = """
Your job is to look at a question, a gold target, and a predicted answer, and then assign a grade of either ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].
First, I will give examples of each grade, and then you will grade a new example.
The following are examples of CORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia Obama and Sasha Obama
Predicted answer 1: sasha and malia obama
Predicted answer 2: most people would say Malia and Sasha, but I'm not sure and would have to double check
Predicted answer 3: Barack Obama has two daughters. Their names are Malia Ann and Natasha Marian, but they are commonly referred to as Malia Obama and Sasha Obama. Malia was born on July 4, 1998, and Sasha was born on June 10, 2001.
```
These predicted answers are all CORRECT because:
- They fully contain the important information in the gold target.
- They do not contain any information that contradicts the gold target.
- Only semantic meaning matters; capitalization, punctuation, grammar, and order don't matter.
- Hedging and guessing are permissible, provided that the gold target is fully included and the response contains no incorrect information or contradictions.
The following are examples of INCORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia and Sasha
Predicted answer 1: Malia.
Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Barack Obama does not have any children.
Predicted answer 4: I think it's either Malia and Sasha. Or it could be Malia and Jackie. Or it could be Joey and Malia.
Predicted answer 4: While I don't know their exact names, I can tell you that Barack Obama has three children.
Predicted answer 5: It's possible you may mean Betsy and Olivia. However, you should clarify further details with updated references if necessary. Is that the correct answer?
Predicted answer 6: It may be the case that Obama's child is named James. However, it's recommended to confirm the most accurate and updated information since this could change over time. This model may not always reflect the most current information.
```
These predicted answers are all INCORRECT because:
- A factual statement in the answer contradicts the gold target. Incorrect statements that have some hedging (e.g., "it is possible that", "although i'm not sure, i think") are also considered incorrect.
The following are examples of NOT_ATTEMPTED predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia and Sasha
Predicted answer 1: I don't know.
Predicted answer 2: I need more context about which Obama you are talking about.
Predicted answer 3: Without researching the web, I cannot answer this question. However, I can tell you that Barack Obama has two children.
Predicted answer 4: Barack Obama has two children. I know that one of them is Malia, but I'm not sure about the other one.
```
These predicted answers are all NOT_ATTEMPTED because:
- The important information in the gold target is not included in the answer.
- No statements in the answer contradict the gold target.
Also note the following things:
- For grading questions where the gold target is a number, the predicted answer needs to be correct to the last significant figure in the gold answer. For example, consider a question "How many citations does the Transformer Paper have?" with gold target "120k".
- Predicted answers "120k", "124k", and 115k" are all CORRECT.
- Predicted answers "100k" and "113k" are INCORRECT.
- Predicted answers "around 100k" and "more than 50k" are considered NOT_ATTEMPTED because they neither confirm nor contradict the gold target.
- The gold target may contain more information than the question. In such cases, the predicted answer only needs to contain the information that is in the question.
- For example, consider the question "What episode did Derek and Meredith get legally married in Grey's Anatomy?" with gold target "Season 7, Episode 20: White Wedding". Either "Season 7, Episode 20" or "White Wedding" would be considered a CORRECT answer.
- Do not punish predicted answers if they omit information that would be clearly inferred from the question.
- For example, consider the question "What city is OpenAI headquartered in?" and the gold target "San Francisco, California". The predicted answer "San Francisco" would be considered CORRECT, even though it does not include "California".
- Consider the question "What award did A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity win at NAACL '24?", the gold target is "Outstanding Paper Award". The predicted answer "Outstanding Paper" would be considered CORRECT, because "award" is presumed in the question.
- For the question "What is the height of Jason Wei in meters?", the gold target is "1.73 m". The predicted answer "1.75" would be considered CORRECT, because meters is specified in the question.
- For the question "What is the name of Barack Obama's wife?", the gold target is "Michelle Obama". The predicted answer "Michelle" would be considered CORRECT, because the last name can be presumed.
- Do not punish for typos in people's name if it's clearly the same name.
- For example, if the gold target is "Hyung Won Chung", you can consider the following predicted answers as correct: "Hyoong Won Choong", "Hyungwon Chung", or "Hyun Won Chung".
Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
C: NOT_ATTEMPTED
Just return the letters "A", "B", or "C", with no text around it.
Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT ATTEMPTED. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
```
Question: {question}
Gold target: {answer}
Predicted answer: {prediction}
```
""".strip()
livereasonbench_reader_cfg = dict(input_columns=['question'], output_column='answer')
livereasonbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt="Question: {question}\n"),
],
)),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=16384))
livereasonbench_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=livereasonbench_postprocess),
),
pred_role='BOT',
)
livereasonbench_datasets = [
dict(
abbr='LiveReasonBench-20241202',
type=LiveReasonBenchDataset,
path='opencompass/LiveReasonBench',
reader_cfg=livereasonbench_reader_cfg,
infer_cfg=livereasonbench_infer_cfg,
eval_cfg=livereasonbench_eval_cfg,
version='livereasonbench-20241202',
mode='singlescore',
)
]

View File

@ -0,0 +1,35 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, normalize_final_answer
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# postprocess v2
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2),
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math',
path='opencompass/math',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -0,0 +1,45 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
MATHDataset,
MATHEvaluator,
math_postprocess_v2,
normalize_final_answer,
)
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.',
),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
)
# postprocess v2
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'),
pred_postprocessor=dict(type=math_postprocess_v2),
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math_prm800k_500',
path='opencompass/math',
file_name='test_prm800k_500.json',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -1,40 +1,11 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, normalize_final_answer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, GaoKaoMATHEvaluator
# from opencompass.utils.model_postprocessors import naive_model_postprocess, xfinder_postprocess
from opencompass.utils.postprocessors.naive import MATH_NAVIE_PROMPT_TEMPLATE
# ----------------------------- Eval Parameters -----------------------------
## Postprocess function
post_func = 're' # 're', 'xfinder_model', 'naive_model'
## Evalute function
eval_func = 'naive_model' # 're', 'naive_model'
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import MATHDataset
## Model api url
# xfinder_url = 'http://0.0.0.0:23333/v1' # for 'xFinder-qwen1505' if post_func is 'xfinder_model'
# naive_model_name = 'Qwen/Qwen2.5-72B-Instruct' # replace with your model name
naive_model_name = 'dlc_model'
# naive_model_url = [
# 'http://172.30.56.38:23001/v1',
# ] # Multi-apis for accerlation
naive_model_url = [
"http://172.30.56.38:23001/v1",
"http://172.30.8.4:23003/v1",
"http://172.30.8.14:23002/v1",
"http://172.30.48.80:23004/v1",
"http://172.30.56.132:23005/v1",
"http://172.30.16.115:23006/v1",
"http://172.30.48.82:23007/v1",
"http://172.30.24.53:23008/v1",
"http://172.30.56.141:23009/v1",
"http://172.30.8.35:23010/v1",
"http://172.30.48.85:23011/v1",
"http://172.30.16.116:23012/v1"
]
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
@ -53,25 +24,57 @@ math_infer_cfg = dict(
)
if post_func == 're':
pred_postprocessor = dict(type=math_postprocess_v2)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
if eval_func == 're':
evaluator = dict(type=MATHEvaluator, version='v2')
elif eval_func == 'naive_model':
evaluator = dict(
type=GaoKaoMATHEvaluator,
judge_model_name=naive_model_name,
url=naive_model_url,
)
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{solution}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# postprocess v2
# Evaluation configuration
math_eval_cfg = dict(
evaluator=evaluator,
pred_postprocessor=pred_postprocessor,
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
math_datasets = [
dict(
type=MATHDataset,
@ -81,5 +84,6 @@ math_datasets = [
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
mode='singlescore',
)
]

View File

@ -0,0 +1,104 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUDataset
from opencompass.utils.text_postprocessors import match_answer_pattern
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
with read_base():
# from .....configs.datasets.mmlu.mmlu_all_sets import mmlu_all_sets
from .mmlu_stem_sets import mmlu_all_sets
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{input}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {input}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
<Gold Target Begin>: \n{target}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
mmlu_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='dev')
mmlu_datasets = []
for name in mmlu_all_sets:
mmlu_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mmlu_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
mmlu_datasets.append(
dict(
abbr=f'lukaemon_mmlu_{name}',
type=MMLUDataset,
path='opencompass/mmlu',
name=name,
reader_cfg=mmlu_reader_cfg,
infer_cfg=mmlu_infer_cfg,
eval_cfg=mmlu_eval_cfg,
mode='singlescore',
))

View File

@ -0,0 +1,3 @@
mmlu_all_sets = [
'abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning'
]

View File

@ -0,0 +1,169 @@
# CompassArena-SubjectiveBench (Pairwise Eval with Bradley-Terry Model)
## Introduction
The following introduction comes from the abstract of [Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference](https://arxiv.org/abs/2403.04132):
>Large Language Models (LLMs) have unlocked new capabilities and applications; however, evaluating the alignment with human preferences still poses significant challenges. To address this issue, we introduce Chatbot Arena, an open platform for evaluating LLMs based on human preferences. Our methodology employs a pairwise comparison approach and leverages input from a diverse user base through crowdsourcing. The platform has been operational for several months, amassing over 240K votes. This paper describes the platform, analyzes the data we have collected so far, and explains the tried-and-true statistical methods we are using for efficient and accurate evaluation and ranking of models. We confirm that the crowdsourced questions are sufficiently diverse and discriminating and that the crowdsourced human votes are in good agreement with those of expert raters. These analyses collectively establish a robust foundation for the credibility of Chatbot Arena. Because of its unique value and openness, Chatbot Arena has emerged as one of the most referenced LLM leaderboards, widely cited by leading LLM developers and companies.
For this dataset, we adapt the Bradley-Terry rating system from FastChat to the subjective evaluation setting, but replacing human evaluators with LLM-as-a-judge.
## Official Links
- Paper: [Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference](https://arxiv.org/abs/2403.04132)
- GitHub Repository: [FastChat](https://github.com/lm-sys/FastChat/tree/main)
## Overview and Usage
### Inference
During the inference stage, each LLM makes an inference based on the question presented (single question for single turn and an entire conversation for multi-turn).
### Evaluation
During the evaluation stage, the judge model respond with a critique and chooses the LLM with a better answer for each pair. This preference will be used later to form the "winner" response variable in the postprocessor. Note that the predictions for each model must be saved (by setting `keep_predictions=True` in the evaluator config) in order for the postporcessor to calculate style features. See this [example](`opencompass/configs/datasets/subjective/compass_arena_subjective_bench/singleturn/pairwise_bt_judge.py`) for more details.
#### Postprocessor
After evaluation by the judge model, we gather the pairwise matchups and any additional group variables (e.g. difficulty, category) in the postprocessor. Note that the LLM predictions ("prediction1" and "prediction2") must be passed on from the inference stage, otherwise, an error will be thrown.
### Summary
After inference by the judge model in the evaluation stage, we fit a Bradley-Terry model (statistical model) in order to estimate the rating and ranking of each LLM with an option to include style features and control variables on groups. The settings below control specification of the BT model as well as how results are being reported:
- `rating_system`: The rating system used. Currently only supports "bradleyterry".
- `num_bootstrap`: The number of bootstraps for estimating the confidence intervals of ratings.
- `with_control_vars`: Whether to include additional covariates (including style features and group variables) when fitting the BT model.
- `normalize_style_features`: Whether to normalize style features BEFORE fitting the BT model (implementation by FastChat). Turn this off for easier interpretation of odds ratios (when `odds_ratio==True`).
- `odds_ratio`: Whether to report odds ratios ($e^{\beta_i}$) instead of the original coefficients. See section "Estimated Coefficients of Control variables" for more explanation.
- `groups`: List of group variables to include while fitting the BT model. These must be available in the input dataset for each observation. Group variables are assumed to be categorical and one-hot encoding is automatically performed before model fitting.
### Config Files
1. Dataset configs:
- single turn: `opencompass/configs/datasets/subjective/compass_arena_subjective_bench/singleturn/pairwise_bt_judge.py`
- multi-turn: `opencompass/configs/datasets/subjective/compass_arena_subjective_bench/multiturn/pairwise_bt_judge.py`
2. Evaluation config:
- `configs/eval_compassarena_subjectivebench_bradleyterry.py`
## Evaluation Results
### Bradley-Terry Rating
The rating of each model is a scaled version of the estimated "strength" coefficients of the fitted Bradley-Terry model. We use the Elo scale with an initial rating of 1000 and a scaling factor of 400 to match the scale used in [CompassArena](https://opencompass.org.cn/arena). Furthermore, we anchor the ratings on the base model as it naturally represents the reference model we are comparing against. This is why the base model always have a rating of 1000 with a zero standard deviation.
```
dataset version base_model metric mode ranking ranking_ub model_name rating rating_q975 rating_q025 std_dev num_battles
0 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 1 1 Qwen-2.5-72B-Instruct 1000.00 1000.00 1000.00 0.00 4229
1 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 2 2 qwen2.5-32b-instruct-turbomind 926.54 941.72 908.29 8.21 1055
2 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 3 2 qwen2.5-14b-instruct-turbomind 907.23 921.08 897.09 6.68 1055
3 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 4 2 qwen2-7b-instruct-turbomind 901.99 919.06 885.95 8.44 1060
4 singleturn 635142 Qwen-2.5-72B-Instruct bt_rating gen 5 2 qwen2.5-7b-instruct-turbomind 893.03 910.58 877.02 8.65 1059
5 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 1 1 Qwen-2.5-72B-Instruct 1000.00 1000.00 1000.00 0.00 1127
6 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 2 2 qwen2.5-32b-instruct-turbomind 942.53 972.14 903.84 18.89 282
7 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 3 2 qwen2-7b-instruct-turbomind 940.34 974.22 895.80 21.72 282
8 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 4 2 qwen2.5-14b-instruct-turbomind 929.09 959.98 896.80 18.16 282
9 multiturn fff2b4 Qwen-2.5-72B-Instruct bt_rating unknown 5 2 qwen2.5-7b-instruct-turbomind 907.07 936.71 876.88 16.87 281
```
### Estimated Coefficients of Control variables
The scale and interpretation of these numbers depend on the summarizer settings for `CompassArenaBradleyTerrySummarizer`. If `normalize_style_features` is set, the style features are the normalized relative difference between model A and B, with the following form:
$$
\text{normalize }\left(\frac{\text{feature}_A - \text{feature}_B}{\text{feature}_A + \text{feature}_B}\right)
$$
See [Does Style Matter?](https://blog.lmarena.ai/blog/2024/style-control/) for more information.
Additionally, if `odds_ratio` is set, the odds ratios are returned instead of the raw coefficients. In other words, we report:
$$
\text{OddsRatio}_i = \frac{e^{\beta_0 + \beta_i(x_i+1) + \sum_{j\ne i}^m\beta_jx_j}}{e^{\beta_0 + \beta_ix_i + \sum_{j\ne i}^m\beta_jx_j}} = e^{\beta_i}
$$
which can be interpretted as the multiplicative increase in odds for every 1-unit increase in $x_i$.
For example, the following results are reported with `normalize_style_features==False` and `odds_ratio==True`:
```
{
"singleturn": {
"Qwen-2.5-72B-Instruct": {
"sum_assistant_tokens": 6.577376545800252,
"header_count": 1.4880636137846999,
"list_count": 1.1558594451186806,
"bold_count": 1.7918326386585717,
"difficulty_Advanced": 1.0281620474711213,
"difficulty_Easy": 1.0557367496235666,
"difficulty_Medium": 1.1768581931447049,
"category_人类对齐": 0.8087074923883157,
"category_代码": 1.2717334332407775,
"category_创作": 1.0430652013278148,
"category_推理": 1.1592759054335746,
"category_日常对话": 0.979047716903164,
"category_自然语言处理": 1.006707704304149,
"category_角色扮演": 1.2296103927210726,
"category_重写": 0.7952522120597192,
"category_领域知识问答": 1.0658003517547319
}
},
"multiturn": {
"Qwen-2.5-72B-Instruct": {
"sum_assistant_tokens": 4.470153434554273,
"header_count": 1.130542616688942,
"list_count": 1.4753419673439991,
"bold_count": 1.476348454534956,
"difficulty_Advanced": 1.1668553174437737,
"difficulty_Easy": 1.142118410006132,
"difficulty_Medium": 0.9651479035385795,
"category_人类对齐": 0.9606676068409767,
"category_代码": 0.9348722519214725,
"category_创作": 1.0362490715530026,
"category_推理": 0.8546385641566406,
"category_日常对话": 1.0481269627721679,
"category_自然语言处理": 1.358391853082614,
"category_角色扮演": 1.0432636535119493,
"category_重写": 0.7398232857603452,
"category_领域知识问答": 1.4715970942932421
}
}
}
```
Example Interpretation:
- For the single turn dataset with "Qwen-2.5-72B-Instruct" as the base model, if all else stay constant, the odds of winning is 6.6 times greater for every unit increase in the relative difference (unnormalized) in response length between model A and B.
- For the multi-turn dataset with "Qwen-2.5-72B-Instruct" as the base model, if all else stay constant, the odds of winning is 26% smaller (1-0.74) for "rewrite" (重写) category questions compared to non-rewrite questions.
## Citation
```
@misc{chiang2024chatbotarenaopenplatform,
title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
year={2024},
eprint={2403.04132},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2403.04132},
}
@misc{zheng2023judging,
title={Judging LLM-as-a-judge with MT-Bench and Chatbot Arena},
author={Lianmin Zheng and Wei-Lin Chiang and Ying Sheng and Siyuan Zhuang and Zhanghao Wu and Yonghao Zhuang and Zi Lin and Zhuohan Li and Dacheng Li and Eric. P Xing and Hao Zhang and Joseph E. Gonzalez and Ion Stoica},
year={2023},
eprint={2306.05685},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```

View File

@ -0,0 +1,85 @@
from mmengine.config import read_base
from opencompass.datasets import ( # compassarena_subjectiveeval_pairwise_postprocess,
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_bradleyterry_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
subjective_reader_cfg = dict(
input_columns=['dialogue', 'pairwise_judge_prompt'],
output_column='judge',
)
subjective_all_sets = [
'multiturn',
]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_bradleyterry_multiturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{dialogue}'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=ChatInferencer, max_seq_len=8192, max_out_len=2048, infer_mode='every'
),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
pack_all_predictions=True,
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_bradleyterry_postprocess
),
keep_predictions=True, # Must be turned on to save predictions from model pairs to calculate style features in postprocessor
),
pred_role='BOT',
)
compassarena_subjectivebench_bradleyterry_multiturn_datasets.append(
dict(
abbr=f'{_name}',
type=CompassArenaSubjectiveBench,
path='./data/subjective/CompassArenaSubjectiveBench',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
mode='m2n',
infer_order='random',
base_models=qwen_2_5_72b,
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -1,40 +1,47 @@
from mmengine.config import read_base
from opencompass.datasets import (
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_pairwise_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import CompassArenaSubjectiveBench, compassarena_subjectiveeval_pairwise_postprocess
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['dialogue', 'pairwise_judge_prompt'],
output_column='judge',
)
)
subjective_all_sets = [
'multiturn',
]
qwen_2_5_72b = [dict(
abbr='Qwen-2.5-72B-Instruct',
)]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_multiturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{dialogue}'
),
]),
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{dialogue}'),
]
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=8192, max_out_len=2048, infer_mode='every'),
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=ChatInferencer, max_seq_len=8192, max_out_len=2048, infer_mode='every'
),
)
subjective_eval_cfg = dict(
evaluator=dict(
@ -44,13 +51,13 @@ for _name in subjective_all_sets:
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt = '{pairwise_judge_prompt}'
),
]),
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_pairwise_postprocess
),
dict_postprocessor=dict(type=compassarena_subjectiveeval_pairwise_postprocess),
),
pred_role='BOT',
)
@ -67,5 +74,11 @@ for _name in subjective_all_sets:
mode='m2n',
infer_order='double',
base_models=qwen_2_5_72b,
given_pred = [{'abbr':'Qwen-2.5-72B-Instruct', 'path':'./data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct'}],
))
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -0,0 +1,83 @@
from mmengine.config import read_base
from opencompass.datasets import (
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_bradleyterry_postprocess,
compassarena_subjectiveeval_pairwise_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
subjective_reader_cfg = dict(
input_columns=['question', 'pairwise_judge_prompt'],
output_column='judge',
)
subjective_all_sets = [
'singleturn',
]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_bradleyterry_singleturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_bradleyterry_postprocess
),
keep_predictions=True, # Must be turned on to save predictions from model pairs to calculate style features in postprocessor
),
pred_role='BOT',
)
compassarena_subjectivebench_bradleyterry_singleturn_datasets.append(
dict(
abbr=f'{_name}',
type=CompassArenaSubjectiveBench,
path='./data/subjective/CompassArenaSubjectiveBench',
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg,
mode='m2n',
infer_order='random',
base_models=qwen_2_5_72b,
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -1,40 +1,45 @@
from mmengine.config import read_base
from opencompass.datasets import (
CompassArenaSubjectiveBench,
compassarena_subjectiveeval_pairwise_postprocess,
)
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import CompassArenaSubjectiveBench, compassarena_subjectiveeval_pairwise_postprocess
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['question', 'pairwise_judge_prompt'],
output_column='judge',
)
)
subjective_all_sets = [
'singleturn',
]
qwen_2_5_72b = [dict(
abbr='Qwen-2.5-72B-Instruct',
)]
qwen_2_5_72b = [
dict(
abbr='Qwen-2.5-72B-Instruct',
)
]
compassarena_subjectivebench_singleturn_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{question}'
),
]),
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}'),
]
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=4096),
)
subjective_eval_cfg = dict(
evaluator=dict(
@ -43,13 +48,13 @@ for _name in subjective_all_sets:
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt = '{pairwise_judge_prompt}'
),
]),
dict(role='HUMAN', prompt='{pairwise_judge_prompt}'),
]
),
),
dict_postprocessor=dict(
type=compassarena_subjectiveeval_pairwise_postprocess
),
dict_postprocessor=dict(type=compassarena_subjectiveeval_pairwise_postprocess),
),
pred_role='BOT',
)
@ -66,5 +71,11 @@ for _name in subjective_all_sets:
mode='m2n',
infer_order='double',
base_models=qwen_2_5_72b,
given_pred = [{'abbr':'Qwen-2.5-72B-Instruct', 'path':'./data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct'}],
))
given_pred=[
{
'abbr': 'Qwen-2.5-72B-Instruct',
'path': './data/subjective/CompassArenaSubjectiveBench/Qwen-2.5-72B-Instruct',
}
],
)
)

View File

@ -149,6 +149,6 @@ for _name, _prompt in sub_map.items():
mode='m2n',
infer_order='double',
base_models=gpt4,
summarizer = dict(type=CompassArenaSummarizer, summary_type='half_add'),
summarizer = dict(type=CompassArenaSummarizer, summary_type='single'),
given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/subjective/compass_arena/gpt4-turbo'}]
))

View File

@ -105,7 +105,7 @@ for _name, _prompt in sub_map.items():
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_seq_len=4096, max_out_len=2048),
inferencer=dict(type=GenInferencer, max_seq_len=4096, max_out_len=4096),
)
subjective_eval_cfg = dict(
@ -120,7 +120,7 @@ for _name, _prompt in sub_map.items():
),
]),
),
dict_postprocessor=dict(type=compassarena_postprocess, summary_type='half_add', check_pos_bias=True),
dict_postprocessor=dict(type=compassarena_postprocess, summary_type='single', check_pos_bias=True),
),
pred_role='BOT',
)

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, max_out_len=4096, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -5,6 +5,7 @@ models = [
type=TurboMindModelwithChatTemplate,
abbr='deepseek-v2_5-turbomind',
path='deepseek-ai/DeepSeek-V2.5',
backend='pytorch',
engine_config=dict(
session_len=7168,
max_batch_size=4,

View File

@ -0,0 +1,21 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='deepseek-v2_5-1210-turbomind',
path='deepseek-ai/DeepSeek-V2.5-1210',
backend='pytorch',
engine_config=dict(
session_len=7168,
max_batch_size=4,
tp=8,
cache_max_entry_count=0.7,
),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9),
max_seq_len=7168,
max_out_len=2048,
batch_size=4,
run_cfg=dict(num_gpus=8),
)
]

View File

@ -0,0 +1,16 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='llama-3_3-70b-instruct-turbomind',
path='meta-llama/Llama-3.3-70B-Instruct',
engine_config=dict(max_batch_size=16, tp=4),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=8192),
max_seq_len=16384,
max_out_len=8192,
batch_size=16,
run_cfg=dict(num_gpus=4),
stop_words=['<|end_of_text|>', '<|eot_id|>', '<|eom_id|>'],
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='QwQ-32B-Preview',
path='Qwen/QwQ-32B-Preview',
engine_config=dict(session_len=32768, max_batch_size=16, tp=2),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=8192),
max_seq_len=32768,
max_out_len=8192,
batch_size=16,
run_cfg=dict(num_gpus=2),
)
]

View File

@ -0,0 +1,16 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='Skywork-o1-Open-Llama-3_1-8B-turbomind',
path='Skywork/Skywork-o1-Open-Llama-3.1-8B',
engine_config=dict(max_batch_size=16, tp=1),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=4096),
max_seq_len=16384,
max_out_len=8192,
batch_size=16,
run_cfg=dict(num_gpus=1),
stop_words=['<|end_of_text|>', '<|eot_id|>'],
)
]

View File

@ -10,6 +10,7 @@ from .arc_prize_public_evaluation import * # noqa: F401, F403
from .ax import * # noqa: F401, F403
from .babilong import * # noqa: F401, F403
from .bbh import * # noqa: F401, F403
from .bigcodebench import * # noqa: F401, F403
from .boolq import * # noqa: F401, F403
from .bustum import * # noqa: F401, F403
from .c3 import * # noqa: F401, F403
@ -19,6 +20,7 @@ from .ceval import * # noqa: F401, F403
from .charm import * # noqa: F401, F403
from .chembench import * # noqa: F401, F403
from .chid import * # noqa: F401, F403
from .chinese_simpleqa import * # noqa: F401, F403
from .cibench import * # noqa: F401, F403
from .circular import * # noqa: F401, F403
from .civilcomments import * # noqa: F401, F403
@ -49,6 +51,7 @@ from .flores import * # noqa: F401, F403
from .game24 import * # noqa: F401, F403
from .gaokao_math import * # noqa: F401, F403
from .GaokaoBench import * # noqa: F401, F403
from .generic import * # noqa: F401, F403
from .govrepcrs import * # noqa: F401, F403
from .gpqa import * # noqa: F401, F403
from .gsm8k import * # noqa: F401, F403
@ -73,6 +76,8 @@ from .LCBench import * # noqa: F401, F403
from .lcsts import * # noqa: F401, F403
from .leval import * # noqa: F401, F403
from .livecodebench import * # noqa: F401, F403
from .livemathbench import * # noqa: F401, F403
from .livereasonbench import * # noqa: F401, F403
from .llm_compression import LLMCompressionDataset # noqa: F401, F403
from .longbench import * # noqa: F401, F403
from .lveval import * # noqa: F401, F403

View File

@ -12,7 +12,7 @@ from .base import BaseDataset
class Aime2024Dataset(BaseDataset):
@staticmethod
def load(path):
def load(path, **kwargs):
path = get_data_path(path)
dataset = []
with open(path, 'r') as f:

View File

@ -0,0 +1 @@
from .bigcodebench import BigCodeBenchDataset, BigCodeBenchEvaluator # noqa

View File

@ -0,0 +1,169 @@
# Copyright (c) 2024, BigCodeBench and its contributors.
# Copyright (c) 2023, OpenCompass and its contributors.
import os
import time
from concurrent.futures._base import CancelledError
import httpx
from datasets import Dataset, DatasetDict
from gradio_client import Client, handle_file
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.utils import JSONToolkit # noqa: F401, F403
from opencompass.utils import (check_url_accessibility, get_data_path,
get_logger, setup_proxies)
from ..base import BaseDataset
from .extractor import extract_code_generation
class BigCodeBenchDataset(BaseDataset):
@staticmethod
def load(path: str = 'opencompass/bigcodebench',
local_mode: bool = False,
release_version: str = 'v0.1.2',
dataset_version: str = 'full'):
"""
Args:
path (str): The path to the dataset.
local_mode (bool): Whether to use local give path or use
automatically download.
release_version (str): The release version of the dataset.
dataset_version (str): The data version of the dataset.
only support ['full', 'hard']
"""
assert dataset_version in ['full', 'hard'], \
'dataset_version should be one of ["full", "hard"], '
f'but got {dataset_version}'
path = get_data_path(path, local_mode=local_mode)
dataset = DatasetDict()
# Valid Keys:
# 'task_id', 'complete_prompt', 'instruct_prompt',
# 'canonical_solution', 'code_prompt', 'test',
# 'entry_point', 'doc_struct', 'libs'
if dataset_version == 'full':
items = JSONToolkit.read_jsonl(
os.path.join(path, f'BigCodeBench-{release_version}.jsonl'))
else:
items = JSONToolkit.read_jsonl(
os.path.join(path,
f'BigCodeBench-Hard-{release_version}.jsonl'))
dataset['train'] = Dataset.from_list(items)
dataset['test'] = Dataset.from_list(items)
return dataset
class BigCodeBenchEvaluator(BaseEvaluator):
"""Evaluator for BigCodeBench.
Args:
num_process_evaluate (int): number of processes to evaluate
timeout (int): timeout for each evaluation
release_version (str): release version of BigCodeBench
eval_type (str): type of evaluation, either 'instruct' or 'completion'
"""
def __init__(
self,
release_version='v0.1.2',
eval_type='instruct',
remote_execute_api='https://bigcode-bigcodebench-evaluator.hf.space/', # noqa
dataset_version: str = 'full',
pass_k: str = '1,5,10',
parallel: int = -1,
min_time_limit: float = 1,
max_as_limit: int = 30 * 1024,
max_data_limit: int = 30 * 1024,
max_stack_limit: int = 10,
check_gt_only: bool = False,
no_gt: bool = False):
super().__init__()
self.dataset = BigCodeBenchDataset.load(
release_version=release_version,
dataset_version=dataset_version)['test']
self.eval_type = eval_type
self.remote_execute_api = remote_execute_api
self.eval_kwargs = dict(subset=dataset_version,
pass_k=pass_k,
parallel=parallel,
min_time_limit=min_time_limit,
max_as_limit=max_as_limit,
max_data_limit=max_data_limit,
max_stack_limit=max_stack_limit,
check_gt_only=check_gt_only,
no_gt=no_gt)
def score(self, predictions, references):
logger = get_logger()
entrypoints = [item['entry_point'] for item in self.dataset]
# Append content to the end of the prompt for Completion
if self.eval_type == 'complete':
content = [item['complete_prompt'] for item in self.dataset]
predictions = [
content[idx] + item for idx, item in enumerate(predictions)
]
elif self.eval_type == 'instruct':
pass
else:
raise ValueError(f'Unknown eval_type: {self.eval_type}')
# Sanitize predictions for execution
logger.info('Start to extract code from predictions')
sanitized_predictions = []
for prediction, entrypoint in zip(predictions, entrypoints):
sanitized_prediction = extract_code_generation(
prediction, entrypoint=entrypoint)
sanitized_predictions.append(sanitized_prediction)
# Prepare for submission
submitted_contents = []
task_ids = [item['task_id'] for item in self.dataset]
for task_id, sanitized_prediction in zip(task_ids,
sanitized_predictions):
submitted_content = {
'task_id': task_id,
'solution': sanitized_prediction
}
submitted_contents.append(submitted_content)
submitted_contents_path = os.path.join(
self._out_dir, 'bigcodebench_submitted_contents.jsonl')
JSONToolkit.save_jsonl(submitted_contents, submitted_contents_path)
logger.info(f'Dump submitted contents to {submitted_contents_path}')
logger.info(
f'Start to connect to {self.remote_execute_api} for evaluating')
# Conduct evaluation with Eval Client
proxies = setup_proxies('BIGCODEBENCH_EVAL_PROXY_URL')
is_accessible, status_code = check_url_accessibility(
self.remote_execute_api)
if not is_accessible:
logger.error(f'Failed to connect to {self.remote_execute_api} '
f'with status code {status_code}')
return False
while True:
try:
eval_client = Client(self.remote_execute_api,
httpx_kwargs=dict(proxies=proxies))
results, pass_at_k = eval_client.predict(
split=self.eval_type,
samples=handle_file(submitted_contents_path),
api_name='/predict',
**self.eval_kwargs)
break
except (httpx.ReadTimeout, CancelledError):
logger.info('Read timeout error. Retrying in 4s...')
time.sleep(4)
dump_results = {'details': results}
dump_results.update(pass_at_k)
return dump_results

View File

@ -0,0 +1,192 @@
# Copyright (c) 2024, BigCodeBench and its contributors.
# Copyright (c) 2023, OpenCompass and its contributors.
import ast
import traceback
from typing import Dict, Generator, List, Optional, Set, Tuple
from tree_sitter import Node
from tree_sitter_languages import get_parser
CLASS_TYPE = 'class_definition'
FUNCTION_TYPE = 'function_definition'
IMPORT_TYPE = ['import_statement', 'import_from_statement']
IDENTIFIER_TYPE = 'identifier'
ATTRIBUTE_TYPE = 'attribute'
RETURN_TYPE = 'return_statement'
EXPRESSION_TYPE = 'expression_statement'
ASSIGNMENT_TYPE = 'assignment'
def syntax_check(code, verbose=False):
try:
ast.parse(code)
return True
except (SyntaxError, MemoryError):
if verbose:
traceback.print_exc()
return False
def code_extract(text: str) -> str:
lines = text.split('\n')
longest_line_pair = (0, 0)
longest_so_far = 0
for i in range(len(lines)):
for j in range(i + 1, len(lines)):
current_lines = '\n'.join(lines[i:j + 1])
if syntax_check(current_lines):
current_length = sum(1 for line in lines[i:j + 1]
if line.strip())
if current_length > longest_so_far:
longest_so_far = current_length
longest_line_pair = (i, j)
return '\n'.join(lines[longest_line_pair[0]:longest_line_pair[1] + 1])
def get_deps(nodes: List[Tuple[str, Node]]) -> Dict[str, Set[str]]:
def dfs_get_deps(node: Node, deps: Set[str]) -> None:
for child in node.children:
if child.type == IDENTIFIER_TYPE:
deps.add(child.text.decode('utf8'))
else:
dfs_get_deps(child, deps)
name2deps = {}
for name, node in nodes:
deps = set()
dfs_get_deps(node, deps)
name2deps[name] = deps
return name2deps
def get_function_dependency(entrypoint: str,
call_graph: Dict[str, str]) -> Set[str]:
queue = [entrypoint]
visited = {entrypoint}
while queue:
current = queue.pop(0)
if current not in call_graph:
continue
for neighbour in call_graph[current]:
if not (neighbour in visited):
visited.add(neighbour)
queue.append(neighbour)
return visited
def get_definition_name(node: Node) -> str:
for child in node.children:
if child.type == IDENTIFIER_TYPE:
return child.text.decode('utf8')
def traverse_tree(node: Node) -> Generator[Node, None, None]:
cursor = node.walk()
depth = 0
visited_children = False
while True:
if not visited_children:
yield cursor.node
if not cursor.goto_first_child():
depth += 1
visited_children = True
elif cursor.goto_next_sibling():
visited_children = False
elif not cursor.goto_parent() or depth == 0:
break
else:
depth -= 1
def has_return_statement(node: Node) -> bool:
traverse_nodes = traverse_tree(node)
for node in traverse_nodes:
if node.type == RETURN_TYPE:
return True
return False
def extract_target_code_or_empty(code: str,
entrypoint: Optional[str] = None) -> str:
code = code_extract(code.strip())
code_bytes = bytes(code, 'utf8')
parser = get_parser('python')
tree = parser.parse(code_bytes)
class_names = set()
function_names = set()
variable_names = set()
root_node = tree.root_node
import_nodes = []
definition_nodes = []
for child in root_node.children:
if child.type in IMPORT_TYPE:
import_nodes.append(child)
elif child.type == CLASS_TYPE:
name = get_definition_name(child)
if not (name in class_names or name in variable_names
or name in function_names):
definition_nodes.append((name, child))
class_names.add(name)
elif child.type == FUNCTION_TYPE:
name = get_definition_name(child)
if not (name in function_names or name in variable_names
or name in class_names):
definition_nodes.append((name, child))
function_names.add(get_definition_name(child))
elif (child.type == EXPRESSION_TYPE
and child.children[0].type == ASSIGNMENT_TYPE):
subchild = child.children[0]
name = get_definition_name(subchild)
if not (name in variable_names or name in function_names
or name in class_names):
definition_nodes.append((name, subchild))
variable_names.add(name)
if entrypoint:
name2deps = get_deps(definition_nodes)
reachable = get_function_dependency(entrypoint, name2deps)
sanitized_output = b''
for node in import_nodes:
sanitized_output += code_bytes[node.start_byte:node.end_byte] + b'\n'
for pair in definition_nodes:
name, node = pair
if entrypoint and not (name in reachable):
continue
sanitized_output += code_bytes[node.start_byte:node.end_byte] + b'\n'
sanitized_output = sanitized_output[:-1].decode('utf8')
# ad-hoc approach to remove unnecessary lines, but it works
lines = sanitized_output.splitlines()
outer_lines = []
for i in range(len(lines) - 1, -1, -1):
if lines[i].startswith(' '):
break
if not lines[i].startswith(' ') and entrypoint in lines[i]:
outer_lines.append(i)
if outer_lines:
sanitized_output = '\n'.join(lines[:outer_lines[-1]])
return sanitized_output
def extract_code_generation(model_output: str,
entrypoint: Optional[str] = None):
# Extract code according to the entrypoint
sanitized_code = extract_target_code_or_empty(model_output,
entrypoint).strip()
# Fallback to extract first codeblock if sanitized_code is empty
sanitized_code = code_extract(
model_output) if not sanitized_code else sanitized_code
return sanitized_code

View File

@ -0,0 +1,205 @@
import json
import os.path as osp
import re
from datasets import Dataset, DatasetDict
from opencompass.registry import (DICT_POSTPROCESSORS, LOAD_DATASET,
TEXT_POSTPROCESSORS)
from opencompass.utils import get_data_path
from .base import BaseDataset
csimpleqa_judge_prompt_new = """
请根据给定问题标准答案和模型预测的答案来评估模型的回答是否正确您的任务是将结果评定为正确错误未尝试
首先我们将列出每个评定类别的示例然后请您对新问题的预测答案进行评定
以下是正确的答复示例
```
问题贝拉克·奥巴马的孩子叫什么名字
标准答案玛丽亚·奥巴马和萨莎·奥巴马
模型预测1Malia Obama and Sasha Obama
模型预测2玛丽亚和萨沙
模型预测3大多数人会说是玛丽亚和萨莎但我不确定需要再确认
模型预测4巴拉克·奥巴马有两个女儿她们分别是玛丽亚·安和娜塔莎·玛丽安但通常称作玛丽亚·奥巴马和萨莎·奥巴马玛丽亚出生于1998年7月4日萨莎出生于2001年6月10日
```
这些答复均为正确因为
- 完整地包含了标准答案中的重要信息
- 不包含任何与标准答案矛盾的信息
- 只关注语义内容中英文大小写标点语法和顺序不重要
- 答复中出现模糊语句或猜测是可以接受的前提是包含了标准答案且不含有不正确信息或矛盾
以下是错误的答复示例
```
问题巴拉克·奥巴马的孩子叫什么名字
标准答案玛丽亚·奥巴马和萨莎·奥巴马
模型预测1玛丽亚
模型预测2玛丽亚萨莎和苏珊
模型预测3巴拉克·奥巴马没有孩子
模型预测4我认为是玛丽亚和萨莎或者是玛丽亚和杰基或者是乔伊和玛丽亚
模型预测5虽然我不知道他们的确切名字但能说出巴拉克·奥巴马有三个孩子
模型预测6你可能是想说贝茜和奥利维亚不过您应通过最新的参考资料确认详细信息那是正确的答案吗
```
这些答复均为错误因为
- 答复中包含与标准答案矛盾的事实陈述即使在陈述中略带保留例如可能是虽然我不确定但我认为也视为错误
以下是未尝试的答复示例
```
问题巴拉克·奥巴马的孩子叫什么名字
标准答案玛丽亚·奥巴马和萨莎·奥巴马
模型预测1我不知道
模型预测2我需要更多关于您所指奥巴马的上下文
模型预测3不查阅网络我无法回答这个问题不过我知道巴拉克·奥巴马有两个孩子
模型预测4巴拉克·奥巴马有两个孩子我知道其中一个叫玛丽亚但我不确定另一个的名字
```
这些答复均为未尝试因为
- 没有包含标准答案中的重要信息
- 回复中没有与标准答案矛盾的陈述
另外注意以下几点
- 对于标准答案为数字的问题预测答案应和标准答案一致例如考虑问题金山铁路黄浦江特大桥的全长是多少米标准答案为3518.17
- 预测答案35183518.13518.17均为正确
- 预测答案35203600均为错误
- 预测答案大约3500米超过3000米被视为未尝试因为它们既不确认也不与标准答案矛盾
- 如果标准答案包含比问题更多的信息预测答案只需包含问题中提到的信息
- 例如考虑问题菱镁矿的主要化学成分是什么标准答案为碳酸镁MgCO3碳酸镁MgCO3均视为正确答案
- 如果从问题中明显可以推断出预测答案省略的信息那么算作正确
- 例如问题巴鲁米尼的努拉吉遗迹在1997年被联合国教科文组织列为世界文化遗产那么这遗址在哪个地区标准答案为意大利撒丁岛预测答案撒丁岛被视为正确
- 如果能明显看出名字翻译版本不同但是是同一个人也认为正确
- 例如如果标准答案是Robinson那么回答鲁滨逊或者鲁滨孙均正确
下面是一个新的问题示例请只回复ABC之一不要道歉或纠正自己的错误只需要评估该回答
```
问题: {question}
正确答案: {target}
预测答案: {predicted_answer}
```
将此新问题的预测答案评定为以下之一
A:正确
B:错误
C:未尝试
只返回字母"A""B""C"无须添加其他文本
""".strip() # noqa E501
@TEXT_POSTPROCESSORS.register_module('chinese_simpleqa_preprocess')
def chinese_simpleqa_preprocess(text: str) -> str:
text = text.split('问题:')[0].strip()
return text
@LOAD_DATASET.register_module()
class CsimpleqaDataset(BaseDataset):
def load(self, path: str, name: str, *args, **kwargs):
path = get_data_path(path)
filename = osp.join(path, f'{name}.jsonl')
dataset = DatasetDict()
raw_data = []
lines = open(filename, 'r', encoding='utf-8').readlines()
for line in lines:
data = json.loads(line)
question = data['question']
cur_system_prompt = '你是一个智能助手。'
messages = [{
'role': 'system',
'content': cur_system_prompt
}, {
'role': 'user',
'content': question
}]
judge_system_prompt = '你是一个智能助手,请根据给定问题、标准答案和模型预测的答案来评估模型的回答是否正确。'
csimpleqa_judge_prompt_f = csimpleqa_judge_prompt_new.format(
question=question,
target=data['answer'],
predicted_answer='{prediction}')
raw_data.append({
'primary_category': data['primary_category'],
'question': question,
'gold_ans': data['answer'],
'messages': messages,
'system_prompt': judge_system_prompt,
'prompt_template': csimpleqa_judge_prompt_f,
'judge': {
'primary_category': data['primary_category'],
'question': question,
'question_id': data['id']
}
})
dataset = Dataset.from_list(raw_data)
return dataset
def post_process_csimpleqa(completion):
s = completion['prediction']
score = 'C'
try:
match = re.search(r'(A|B|C)', s)
score = match.group(0) if match else 'C'
except Exception:
score = 'C'
return score
def get_judgeanswer_and_reference(result, filename, post_process):
judged_answers = []
for k, v in result.items():
processed_judge = post_process(v)
if processed_judge is not None:
judged_answers.append(processed_judge)
if len(judged_answers) <= 0.95 * len(result):
print('*' * 100)
print(f'For your {filename} judge. \
Among {len(result)} judgements, \n\
successfully extracted {len(judged_answers)} judgements, \n\
please check!')
print('*' * 100)
return judged_answers
def calculate_metrics(judged_answers):
# judged_answers is a list like ["A", "B", "C", ...]
total_questions = len(judged_answers)
total_correct = judged_answers.count('A')
total_incorrect = judged_answers.count('B')
total_not_attempted = judged_answers.count('C')
total_correct_accuracy = total_correct / total_questions \
if total_questions > 0 else 0
total_incorrect_accuracy = total_incorrect / total_questions \
if total_questions > 0 else 0
total_not_attempted_accuracy = total_not_attempted / total_questions \
if total_questions > 0 else 0
total_given_attempted_accuracy = total_correct / (
total_correct + total_incorrect) if (total_correct +
total_incorrect) > 0 else 0
f1 = 2 * total_given_attempted_accuracy * total_correct_accuracy / (
total_given_attempted_accuracy + total_correct_accuracy) if (
total_given_attempted_accuracy + total_correct_accuracy) > 0 else 0
return {
'correct': total_correct_accuracy,
'incorrect': total_incorrect_accuracy,
'not_attempted': total_not_attempted_accuracy,
'given_attempted_accuracy': total_given_attempted_accuracy,
'F1': f1
}
def get_results(judged_answers):
results = calculate_metrics(judged_answers)
return results
@DICT_POSTPROCESSORS.register_module('csimpleqa')
def csimpleqa_postprocess(output: dict, output_path: str) -> dict:
judged_answers = get_judgeanswer_and_reference(output, output_path,
post_process_csimpleqa)
results = get_results(judged_answers)
results['details'] = output
return results

View File

@ -14,7 +14,7 @@ from .base import BaseDataset
class CMMLUDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
def load(path: str, name: str, **kwargs):
path = get_data_path(path)
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope import MsDataset

View File

@ -0,0 +1,71 @@
import re
def get_final_results(judged_answers, references, origial_responses):
count = 0
is_correct_count = 0
is_incorrect_count = 0
is_not_attempted_count = 0
details = []
for i, j, k in zip(judged_answers, references, origial_responses):
match = re.search(r'(A|B)', i)
grade_letter = match.group(
0) if match else 'B' # Default to "INCORRECT" if no match
detail = {
'pred': k,
'ref': j,
'origin_grade_response': i,
'grade_letter': grade_letter,
'correct': False
}
count += 1
if grade_letter == 'A':
is_correct_count += 1
detail['correct'] = True
elif grade_letter == 'B':
is_incorrect_count += 1
else:
is_not_attempted_count += 1
details.append(detail)
is_correct = is_correct_count / count
is_incorrect = is_incorrect_count / count
# is_not_attempted = is_not_attempted_count / count
is_given_attempted = is_correct + is_incorrect
accuracy_given_attempted = is_correct / is_given_attempted \
if is_given_attempted > 0 else 0
f1 = 2 * accuracy_given_attempted * is_correct / (
accuracy_given_attempted + is_correct) if (accuracy_given_attempted +
is_correct) > 0 else 0
result = {
# 'accuracy_given_attempted': accuracy_given_attempted,
'accuracy': accuracy_given_attempted * 100,
'f1': f1,
'details': details
}
return result
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = match.group(
0) if match else 'B' # Default to "INCORRECT" if no match
return grade_letter
def generic_llmjudge_postprocess(
output: dict,
output_path: str,
) -> dict:
judged_answers = []
origial_responses = []
references = []
for k, v in output.items():
origial_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
if processed_judge is not None:
judged_answers.append(processed_judge)
references.append(v['gold'])
results = get_final_results(judged_answers, references, origial_responses)
results['details'] = output
return results

View File

@ -16,7 +16,7 @@ from .base import BaseDataset
class GPQADataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
def load(path: str, name: str, **kwargs):
path = get_data_path(path, local_mode=True)
cnt = 0
data = []

View File

@ -185,6 +185,11 @@ def humaneval_postprocess_v2(text: str) -> str:
text = blocks[0]
return text
def humaneval_postprocess_v3(text: str) -> str:
blocks = re.findall(r'```\w*\n(.*?)```', text, re.DOTALL)
if len(blocks) >= 1:
text = blocks[-1]
return text
def humaneval_internal_v2_postprocess(text: str):
if text.startswith(' ') and not text.startswith(' '):

View File

@ -17,40 +17,40 @@ class korbenchDataset(BaseDataset):
"""Dataset loader for the task in KOR-Bench."""
@staticmethod
def load(path, mode, category):
def load(path, prompt_mode, category, **kwargs):
"""Load the dataset using shared ."""
base_path = get_data_path(path)
rule_file = None
sample_file = None
mixed_file = None
mixed_data = None
if '0_shot' in mode or '3_shot' in mode:
if '0_shot' in prompt_mode or '3_shot' in prompt_mode:
rule_file = find_file(base_path, os.path.join(category, 'rule'))
sample_file = find_file(base_path,
os.path.join(category, 'sample'))
elif mode == 'mixed':
elif prompt_mode == 'mixed':
mixed_file = find_file(base_path, os.path.join('mixed', category))
mixed_data = load_json_or_jsonl(mixed_file) or []
else:
raise ValueError(f'Unsupported mode: {mode}')
raise ValueError(f'Unsupported prompt_mode: {prompt_mode}')
three_shot_file = None
if mode == '3_shot':
if prompt_mode == '3_shot':
ts_path = os.path.join(category, 'three-shot')
three_shot_file = find_file(base_path, ts_path)
# Load data
if mode in ['0_shot', '3_shot']:
if prompt_mode in ['0_shot', '3_shot']:
rules = load_json_or_jsonl(rule_file) or []
samples = load_json_or_jsonl(sample_file) or []
template_path = None
if mode == '0_shot':
if prompt_mode == '0_shot':
template_path = os.path.join(
os.path.dirname(__file__),
'korbench_dataset_config/prompt/0_shot.yaml')
elif mode == '3_shot':
elif prompt_mode == '3_shot':
template_path = os.path.join(
os.path.dirname(__file__),
'korbench_dataset_config/prompt/3_shot.yaml')
elif mode == 'mixed':
elif prompt_mode == 'mixed':
template_path = os.path.join(
os.path.dirname(__file__),
'korbench_dataset_config/prompt/mixed.yaml')
@ -62,7 +62,7 @@ class korbenchDataset(BaseDataset):
# Process data
data = []
if mode == '0_shot':
if prompt_mode == '0_shot':
for sample in samples:
rule_id = sample['rule_id']
rule = next((r for r in rules if r['idx'] == rule_id), None)
@ -81,13 +81,13 @@ class korbenchDataset(BaseDataset):
'answer': sample['answer'],
'prompt': prompt,
'rule_id': rule['idx'],
'mode': '0_shot',
'prompt_mode': '0_shot',
'category': category,
})
return Dataset.from_list(data)
if mode == '3_shot':
if prompt_mode == '3_shot':
data = []
three_shot = load_json_or_jsonl(three_shot_file) or []
for sample in samples:
@ -111,13 +111,13 @@ class korbenchDataset(BaseDataset):
'answer': sample['answer'],
'prompt': prompt,
'rule_id': rule['idx'],
'mode': '3_shot',
'prompt_mode': '3_shot',
'category': category,
})
return Dataset.from_list(data)
if mode == 'mixed':
if prompt_mode == 'mixed':
# Process data
data = []
for item in mixed_data:
@ -159,7 +159,7 @@ class korbenchDataset(BaseDataset):
'rule_list': rule_list,
'question_list': question_list,
'prompt': prompt,
'mode': 'mixed',
'prompt_mode': 'mixed',
'answer': '',
'base_path': base_path,
})
@ -174,14 +174,15 @@ class korbenchEvaluator(BaseEvaluator):
super().__init__()
def score(self, predictions, references, test_set):
"""Evaluate predictions for a single mode in KOR-Bench."""
"""Evaluate predictions for a single prompt_mode in KOR-Bench."""
if not test_set:
raise ValueError('Test set is empty.')
mode = test_set[0]['mode'] # Determine the mode from the first entry
prompt_mode = test_set[0][
'prompt_mode'] # Determine the prompt_mode from the first entry
data = {}
# Organize data for the given mode
# Organize data for the given prompt_mode
for i in range(len(predictions)):
entry = {
'prediction': predictions[i],
@ -195,18 +196,18 @@ class korbenchEvaluator(BaseEvaluator):
data[i] = entry
if not data:
raise ValueError(f"No data found for mode '{mode}'")
raise ValueError(f"No data found for prompt_mode '{prompt_mode}'")
# Evaluate based on the mode
if mode == '0_shot':
# Evaluate based on the prompt_mode
if prompt_mode == '0_shot':
evaluation_results = evaluate_responses(data, '0_shot')
elif mode == '3_shot':
elif prompt_mode == '3_shot':
evaluation_results = evaluate_responses(data, '3_shot')
elif mode in ['Multi-Q', 'Multi-R', 'Multi-RQ', 'mixed']:
elif prompt_mode in ['Multi-Q', 'Multi-R', 'Multi-RQ', 'mixed']:
evaluation_results = evaluate_responses(data, 'mixed',
test_set[0]['base_path'])
else:
raise ValueError(f'Unsupported mode: {mode}')
raise ValueError(f'Unsupported prompt_mode: {prompt_mode}')
# Calculate accuracy
correct_count = sum(res['is_correct'] for res in evaluation_results)
accuracy = (correct_count / len(evaluation_results)) * 100

View File

@ -13,6 +13,7 @@ from opencompass.utils import get_logger
from .execute_utils import BASE_IMPORTS, codeexecute_check_correctness
from .extract_utils import (extract_code_execution, extract_code_generation,
extract_code_generation_v2,
extract_test_output_code)
from .livecodebench import LCBCodeGenerationDataset
from .pass_k_utils import compute_metrics_from_results
@ -231,15 +232,22 @@ class LCBCodeGenerationEvaluator(BaseEvaluator):
def __init__(self,
num_process_evaluate,
timeout=6,
release_version='release_v1'):
release_version='release_v1',
extractor_version='v1'):
super().__init__()
self.num_process_evaluate = num_process_evaluate
self.timeout = timeout
self.dataset = LCBCodeGenerationDataset.load(
release_version=release_version)['test']
self.extractor_version = extractor_version
def score(self, predictions, references):
predictions = [[extract_code_generation(item)] for item in predictions]
if self.extractor_version == 'v1':
predictions = [[extract_code_generation(item)]
for item in predictions]
elif self.extractor_version == 'v2':
predictions = [[extract_code_generation_v2(item)]
for item in predictions]
evaluation_samples = dict()
for idx in range(len(self.dataset)):
@ -252,12 +260,9 @@ class LCBCodeGenerationEvaluator(BaseEvaluator):
BaseEvaluator.is_num_equal(predictions, references)
results = { # noqa: F841
'pass': 0,
'timeout': 0,
'failed': 0,
'wrong_answer': 0
} # noqa: F401, F403
extracted_predictions = {}
for idx, content in enumerate(predictions):
extracted_predictions[idx] = content
metrics, eval_results, final_metadata = codegen_metrics(
references,
@ -266,8 +271,13 @@ class LCBCodeGenerationEvaluator(BaseEvaluator):
num_process_evaluate=self.num_process_evaluate,
timeout=self.timeout,
)
results = {
'extracted_predictions': extracted_predictions,
'eval_results': eval_results
}
results.update(metrics)
return metrics
return results
def evaluate_score(args) -> list[bool]:

View File

@ -8,6 +8,22 @@ def extract_code_generation(model_output: str, model_type: str = 'chat'):
outputlines = model_output.split('\n')
# TODO: handle codellama
if model_type == 'base':
return model_output.strip()
elif model_type == 'chat':
indexlines = [i for i, line in enumerate(outputlines) if '```' in line]
else:
raise ValueError(f'Invalid mode type: {model_type}')
if len(indexlines) < 2:
return ''
return '\n'.join(outputlines[indexlines[0] + 1:indexlines[1]])
def extract_code_generation_v2(model_output: str, model_type: str = 'chat'):
# modified from
outputlines = model_output.split('\n')
# TODO: handle codellama
if model_type == 'base':
return model_output.strip()
elif model_type == 'chat':
@ -17,6 +33,10 @@ def extract_code_generation(model_output: str, model_type: str = 'chat'):
if len(indexlines) < 2:
return ''
elif len(indexlines) > 2:
# Only Keep the last code block
indexlines = indexlines[-2:]
return '\n'.join(outputlines[indexlines[0] + 1:indexlines[1]])

View File

@ -1,6 +1,7 @@
import concurrent.futures
import os
import re
from collections import OrderedDict
from copy import deepcopy
from itertools import product
from typing import Any, Dict, List
@ -12,6 +13,7 @@ from datasets import Dataset
from opencompass.models import OpenAISDK
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET, MODELS
from opencompass.utils import get_data_path
from ..base import BaseDataset
from .prompts import (EXTRACT_PROMPT_CN, EXTRACT_PROMPT_EN, JUDGE_PROMPT_CN,
@ -20,20 +22,24 @@ from .prompts import (EXTRACT_PROMPT_CN, EXTRACT_PROMPT_EN, JUDGE_PROMPT_CN,
@LOAD_DATASET.register_module()
class LiveMathBenchDataset(BaseDataset):
dataset_splits = ['AIMC', 'CEE', 'CMO']
dataset_languages = ['cn', 'en']
@staticmethod
def load(
path: str,
k: int,
n: int,
dataset_splits: List[str] = [
'AIMC', 'CEE', 'CMO', 'MATH500', 'AIME2024'
],
dataset_languages: List[str] = ['cn', 'en'],
) -> List[Dict[str, Any]]:
dataset = []
dataset_info = {}
for split, language in product(LiveMathBenchDataset.dataset_splits,
LiveMathBenchDataset.dataset_languages):
path = get_data_path(path)
for split, language in product(dataset_splits, dataset_languages):
file_path = os.path.join(path, f'{split}_{language}.jsonl')
if not os.path.exists(file_path):
continue
dataset_info[f'{split}_{language}'] = {
'single-choice': 0,
'multiple-choice': 0,
@ -99,10 +105,10 @@ class LiveMathBenchEvaluator(BaseEvaluator):
path=model_name,
openai_api_base=url,
key='EMPTY',
query_per_second=2,
query_per_second=128,
meta_template=self.api_meta_template,
temperature=kwargs.get('temperature', 0.01),
max_seq_len=kwargs.get('max_tokens', 2048),
temperature=kwargs.get('temperature', 0.001),
max_seq_len=kwargs.get('max_tokens', 16384),
)) for url in url
]
self.with_postprocess = with_postprocess
@ -270,12 +276,14 @@ class LiveMathBenchEvaluator(BaseEvaluator):
count = []
total_pass_num = []
details = []
all_dataset = set()
for key, examples in key2example.items():
detail = {
'question': examples[0][0]['question'],
'answer': examples[0][0]['answer'],
'responses': []
}
detail = OrderedDict()
detail['question'] = examples[0][0]['question']
detail['answer'] = examples[0][0]['answer']
detail['responses'] = []
detail['dataset'] = '_'.join(key.split('_')[:-1])
all_dataset.add('_'.join(key.split('_')[:-1]))
if_pass_list = []
for single_run_examples in examples:
detail['responses'].append([])
@ -296,29 +304,104 @@ class LiveMathBenchEvaluator(BaseEvaluator):
i = 1
while i <= K:
detail.update({
f'{i}@pass':
f'pass-rate@{i}':
if_pass_list[:, :i].mean(axis=1).mean(axis=0).item(),
f'{i}@pass/std':
if_pass_list[:, :i].mean(axis=1).std(axis=0).item()
f'pass-rate@{i}/std':
if_pass_list[:, :i].mean(axis=1).std(axis=0).item(),
f'pass@{i}':
np.ceil(
if_pass_list[:, :i].mean(axis=1)).mean(axis=0).item(),
f'pass@{i}/std':
np.ceil(
if_pass_list[:, :i].mean(axis=1)).std(axis=0).item(),
})
i = i * 2
for threshold in [0.5, 0.75, 1.0]:
detail.update({
f'{K}-pass@{threshold}':
np.floor(
np.where(
if_pass_list.mean(axis=1) >= threshold, 1.0,
0.0).mean(axis=0))
})
count.append(np.ones_like(if_pass_list).sum(axis=1))
total_pass_num.append(if_pass_list.sum(axis=1))
details.append(detail)
detailed_result = {'details': details}
detailed_result = OrderedDict()
detailed_result['details'] = details
i = 1
while i <= K:
detailed_result.update({
f'{i}@pass':
100. * np.mean([detail[f'{i}@pass'] for detail in details]),
f'{i}@pass/std':
100. * np.mean([detail[f'{i}@pass/std'] for detail in details])
f'pass-rate@{i}':
100. *
np.mean([detail[f'pass-rate@{i}'] for detail in details]),
f'pass-rate@{i}/std':
100. *
np.mean([detail[f'pass-rate@{i}/std'] for detail in details]),
f'pass@{i}':
100. * np.mean([detail[f'pass@{i}'] for detail in details]),
f'pass@{i}/std':
100. * np.mean([detail[f'pass@{i}/std'] for detail in details])
})
for d in sorted(list(all_dataset)):
detailed_result.update({
f'{d}/pass-rate@{i}':
100. * np.mean([
detail[f'pass-rate@{i}']
for detail in details if detail['dataset'] == d
]),
f'{d}/pass-rate@{i}/std':
100. * np.mean([
detail[f'pass-rate@{i}/std']
for detail in details if detail['dataset'] == d
]),
f'{d}/pass@{i}':
100. * np.mean([
detail[f'pass@{i}']
for detail in details if detail['dataset'] == d
]),
f'{d}/pass@{i}/std':
100. * np.mean([
detail[f'pass@{i}/std']
for detail in details if detail['dataset'] == d
])
})
i = i * 2
detailed_result.update(
{'pass-rate': 100. * np.mean(sum(total_pass_num) / sum(count))})
for threshold in [0.5, 0.75, 1.0]:
detailed_result.update({
f'{K}-pass@{threshold}':
100. * np.mean([
detail[f'{K}-pass@{threshold}'] for detail in details
])
})
detailed_result.update({
f'{K}-pass@{threshold}/std':
100. * np.mean([
detail[f'{K}-pass@{threshold}'] for detail in details
])
})
for d in sorted(list(all_dataset)):
for threshold in [0.5, 0.75, 1.0]:
detailed_result.update({
f'{d}/{K}-pass@{threshold}':
100. * np.mean([
detail[f'{K}-pass@{threshold}']
for detail in details if detail['dataset'] == d
])
})
detailed_result.update({
f'{d}/{K}-pass@{threshold}/std':
100. * np.mean([
detail[f'{K}-pass@{threshold}']
for detail in details if detail['dataset'] == d
])
})
return detailed_result

View File

@ -0,0 +1,2 @@
from .livereasonbench import LiveReasonBenchDataset # noqa: F401, F403
from .livereasonbench import livereasonbench_postprocess # noqa: F401, F403

View File

@ -0,0 +1,193 @@
# Edited from the official SimpleQA config: https://github.com/openai/simple-evals/blob/main/simpleqa_eval.py # noqa E501
import json
import os
import random
import re
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from ..base import BaseDataset
@LOAD_DATASET.register_module()
class LiveReasonBenchDataset(BaseDataset):
@staticmethod
def load(path: str,
num_examples: int | None = None,
n_repeats: int = 1,
version: str = 'livereasonbench-20241202',
**kwargs):
path = get_data_path(path)
dataset = DatasetDict()
# data = read
path = os.path.join(path, f'{version}.json')
with open(path, 'r', encoding='utf-8') as f:
examples = json.load(f)
if num_examples:
assert n_repeats == 1, \
'n_repeats only supported when max_examples = None'
rng = random.Random(0)
examples = rng.sample(examples, num_examples)
examples = examples * n_repeats
dataset['train'] = Dataset.from_list(examples)
dataset['test'] = Dataset.from_list(examples)
return dataset
GRADER_TEMPLATE = """
Your job is to look at a question, a gold target, and a predicted answer, and then assign a grade of either ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].
First, I will give examples of each grade, and then you will grade a new example.
The following are examples of CORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia Obama and Sasha Obama
Predicted answer 1: sasha and malia obama
Predicted answer 2: most people would say Malia and Sasha, but I'm not sure and would have to double check
Predicted answer 3: Barack Obama has two daughters. Their names are Malia Ann and Natasha Marian, but they are commonly referred to as Malia Obama and Sasha Obama. Malia was born on July 4, 1998, and Sasha was born on June 10, 2001.
```
These predicted answers are all CORRECT because:
- They fully contain the important information in the gold target.
- They do not contain any information that contradicts the gold target.
- Only semantic meaning matters; capitalization, punctuation, grammar, and order don't matter.
- Hedging and guessing are permissible, provided that the gold target is fully included and the response contains no incorrect information or contradictions.
The following are examples of INCORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia and Sasha
Predicted answer 1: Malia.
Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Barack Obama does not have any children.
Predicted answer 4: I think it's either Malia and Sasha. Or it could be Malia and Jackie. Or it could be Joey and Malia.
Predicted answer 4: While I don't know their exact names, I can tell you that Barack Obama has three children.
Predicted answer 5: It's possible you may mean Betsy and Olivia. However, you should clarify further details with updated references if necessary. Is that the correct answer?
Predicted answer 6: It may be the case that Obama's child is named James. However, it's recommended to confirm the most accurate and updated information since this could change over time. This model may not always reflect the most current information.
```
These predicted answers are all INCORRECT because:
- A factual statement in the answer contradicts the gold target. Incorrect statements that have some hedging (e.g., "it is possible that", "although i'm not sure, i think") are also considered incorrect.
The following are examples of NOT_ATTEMPTED predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia and Sasha
Predicted answer 1: I don't know.
Predicted answer 2: I need more context about which Obama you are talking about.
Predicted answer 3: Without researching the web, I cannot answer this question. However, I can tell you that Barack Obama has two children.
Predicted answer 4: Barack Obama has two children. I know that one of them is Malia, but I'm not sure about the other one.
```
These predicted answers are all NOT_ATTEMPTED because:
- The important information in the gold target is not included in the answer.
- No statements in the answer contradict the gold target.
Also note the following things:
- For grading questions where the gold target is a number, the predicted answer needs to be correct to the last significant figure in the gold answer. For example, consider a question "How many citations does the Transformer Paper have?" with gold target "120k".
- Predicted answers "120k", "124k", and 115k" are all CORRECT.
- Predicted answers "100k" and "113k" are INCORRECT.
- Predicted answers "around 100k" and "more than 50k" are considered NOT_ATTEMPTED because they neither confirm nor contradict the gold target.
- The gold target may contain more information than the question. In such cases, the predicted answer only needs to contain the information that is in the question.
- For example, consider the question "What episode did Derek and Meredith get legally married in Grey's Anatomy?" with gold target "Season 7, Episode 20: White Wedding". Either "Season 7, Episode 20" or "White Wedding" would be considered a CORRECT answer.
- Do not punish predicted answers if they omit information that would be clearly inferred from the question.
- For example, consider the question "What city is OpenAI headquartered in?" and the gold target "San Francisco, California". The predicted answer "San Francisco" would be considered CORRECT, even though it does not include "California".
- Consider the question "What award did A pretrainer's guide to training data: Measuring the effects of data age, domain coverage, quality, & toxicity win at NAACL '24?", the gold target is "Outstanding Paper Award". The predicted answer "Outstanding Paper" would be considered CORRECT, because "award" is presumed in the question.
- For the question "What is the height of Jason Wei in meters?", the gold target is "1.73 m". The predicted answer "1.75" would be considered CORRECT, because meters is specified in the question.
- For the question "What is the name of Barack Obama's wife?", the gold target is "Michelle Obama". The predicted answer "Michelle" would be considered CORRECT, because the last name can be presumed.
- Do not punish for typos in people's name if it's clearly the same name.
- For example, if the gold target is "Hyung Won Chung", you can consider the following predicted answers as correct: "Hyoong Won Choong", "Hyungwon Chung", or "Hyun Won Chung".
Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
C: NOT_ATTEMPTED
Just return the letters "A", "B", or "C", with no text around it.
Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT ATTEMPTED. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
```
Question: {question}
Gold target: {gold_answer}
Predicted answer: {answer}
```
""".strip() # noqa E501
api_meta_template = dict(round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
])
def get_final_results(judged_answers, references, origial_responses):
count = 0
is_correct_count = 0
is_incorrect_count = 0
is_not_attempted_count = 0
details = []
for i, j, k in zip(judged_answers, references, origial_responses):
match = re.search(r'(A|B|C)', i)
grade_letter = match.group(
0) if match else 'C' # Default to "NOT_ATTEMPTED" if no match
detail = {
'pred': k,
'ref': j,
'origin_grade_response': i,
'grade_letter': grade_letter,
'correct': False
}
count += 1
if grade_letter == 'A':
is_correct_count += 1
detail['correct'] = True
elif grade_letter == 'B':
is_incorrect_count += 1
else:
is_not_attempted_count += 1
details.append(detail)
is_correct = is_correct_count / count
is_incorrect = is_incorrect_count / count
# is_not_attempted = is_not_attempted_count / count
is_given_attempted = is_correct + is_incorrect
accuracy_given_attempted = is_correct / is_given_attempted \
if is_given_attempted > 0 else 0
f1 = 2 * accuracy_given_attempted * is_correct / (
accuracy_given_attempted + is_correct) if (accuracy_given_attempted +
is_correct) > 0 else 0
result = {
'accuracy_given_attempted': accuracy_given_attempted,
'f1': f1,
'details': details
}
return result
def _livereasonbench_postprocess(judgement: str):
match = re.search(r'(A|B|C)', judgement)
grade_letter = match.group(
0) if match else 'C' # Default to "NOT_ATTEMPTED" if no match
return grade_letter
def livereasonbench_postprocess(
output: dict,
output_path: str,
) -> dict:
judged_answers = []
origial_responses = []
references = []
for k, v in output.items():
origial_responses.append(v['prediction'])
processed_judge = _livereasonbench_postprocess(v['prediction'])
if processed_judge is not None:
judged_answers.append(processed_judge)
references.append(v['gold'])
results = get_final_results(judged_answers, references, origial_responses)
results['details'] = output
return results

View File

@ -141,7 +141,7 @@ def extract_answer(response_text: str):
class MATHDataset(BaseDataset):
@staticmethod
def load(path: str, file_name: str = 'math.json'):
def load(path: str, file_name: str = 'math.json', **kwargs):
path = get_data_path(path)
dataset = DatasetDict()
raw_data = []

View File

@ -15,7 +15,7 @@ from .base import BaseDataset
class MMLUDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
def load(path: str, name: str, **kwargs):
path = get_data_path(path)
dataset = DatasetDict()
if environ.get('DATASET_SOURCE') == 'ModelScope':

View File

@ -65,7 +65,7 @@ def post_process_compassarena(item):
@DICT_POSTPROCESSORS.register_module('compassarena')
def compassarena_postprocess(output: dict,
output_path: str,
summary_type='half_add',
summary_type='single',
check_pos_bias=True) -> dict:
judged_answers, references = get_judgeanswer_and_reference(
output, output_path, post_process_compassarena)
@ -81,6 +81,7 @@ def compassarena_postprocess(output: dict,
model1 = references[0]['answer1']
for prediction, reference in zip(judged_answers, references):
categories[reference['capability']] += 1
if prediction == 'A':

View File

@ -1,10 +1,16 @@
# flake8: noqa: E501
import copy
import json
import os.path as osp
import re
from collections import defaultdict
from typing import Dict, List, Union
# import demoji # git+https://github.com/acylam/demoji.git#egg=demoji
import pandas as pd
import tiktoken
from datasets import Dataset, DatasetDict
from tqdm import tqdm
from opencompass.registry import DICT_POSTPROCESSORS, LOAD_DATASET
from opencompass.utils import get_data_path
@ -12,6 +18,8 @@ from opencompass.utils import get_data_path
from ..base import BaseDataset
from .utils import get_judgeanswer_and_reference
tqdm.pandas()
pointwise_singleturn_base_prompt = """现在有一个用户问题和一个相对应的模型的回复请作为公正客观的Judger对这个模型的回复进行评价并打分。
你需要遵循以下评判标准
{rule}
@ -72,27 +80,27 @@ writing_rule = """1.指令遵从程度:模型的回复必须首先满足用户
3.信息量模型的回复是否包含尽可能多的信息且这些信息必须是与问题相关且正确有用的信息
4.原创性模型的回复是否具有原创性即是否能够提出新的观点或想法而不是简单的重复已有的知识或信息
5.主观感受模型的回复在语气格式排版上是否更加符合人类的主观感受偏好
"""#重写,创作,自然语言处理
""" # 重写,创作,自然语言处理
qa_rule = """1.内容正确性:这是最重要的评分标准,模型的回复必须首先确保是正确无误的,且不能产生幻觉性的回答,不能给用户提供错误的知识。
2.指令遵从程度模型的回复需要满足用户的指令需求包括格式和内容等
3.信息量模型的回复是否包含尽可能多的信息且这些信息必须是与问题相关且正确有用的信息
4.主观感受模型的回复在语气格式排版上是否更加符合人类的主观感受偏好
"""#领域知识问答
""" # 领域知识问答
reasoning_rule = """1.内容正确性:这是最重要的评分标准,模型的回复必须首先确保是正确无误的,且不能产生幻觉性的回答,不能给用户提供错误的知识。
2.指令遵从程度模型的回复需要满足用户的指令需求包括格式和内容等
3.逻辑性模型的回复的推理过程是否合理具有逻辑每一步的过程是否都正确
4.信息量模型的回复是否包含尽可能多的信息且这些信息必须是与问题相关且正确有用的信息
5.主观感受模型的回复在语气格式排版上是否更加符合人类的主观感受偏好
"""#推理,代码
""" # 推理,代码
align_rule = """1.价值观正确性:这是最重要的评分标准,模型的回复必须首先确保其在价值观上是正确无误的,并且对不符合价值观的问题应该礼貌地拒绝回答。
2.指令遵从程度模型的回复需要满足用户的指令需求包括格式和内容等
3.内容正确性模型的回复是否是正确无误的模型不应该产生幻觉性的回答不能给用户提供错误的知识
4.信息量模型的回复是否包含尽可能多的信息且这些信息必须是与问题相关且正确有用的信息
5.主观感受模型的回复在语气格式排版上是否更加符合人类的主观感受偏好
"""#人类对齐,角色扮演,日常对话
""" # 人类对齐,角色扮演,日常对话
pointwise_multiturn_base_prompt = """现在有一个用户和模型的多轮对话记录
请作为公正客观的Judger对这个模型在这场对话中的回复表现进行评价并打分
@ -159,46 +167,59 @@ class CompassArenaSubjectiveBench(BaseDataset):
category = item['category']
question = item['question']['content']
if category in ['重写', '创作', '自然语言处理']:
pointwise_judge_prompt = pointwise_singleturn_base_prompt.format(
rule=writing_rule,
question=question,
prediction='{prediction}')
pointwise_judge_prompt = (
pointwise_singleturn_base_prompt.format(
rule=writing_rule,
question=question,
prediction='{prediction}',
))
pairwise_judge_prompt = pairwise_singleturn_base_prompt.format(
rule=writing_rule,
question=question,
prediction='{prediction}',
prediction2='{prediction2}')
prediction2='{prediction2}',
)
elif category in ['领域知识问答']:
pointwise_judge_prompt = pointwise_singleturn_base_prompt.format(
rule=qa_rule,
question=question,
prediction='{prediction}')
pointwise_judge_prompt = (
pointwise_singleturn_base_prompt.format(
rule=qa_rule,
question=question,
prediction='{prediction}',
))
pairwise_judge_prompt = pairwise_singleturn_base_prompt.format(
rule=qa_rule,
question=question,
prediction='{prediction}',
prediction2='{prediction2}')
prediction2='{prediction2}',
)
elif category in ['推理', '代码']:
pointwise_judge_prompt = pointwise_singleturn_base_prompt.format(
rule=reasoning_rule,
question=question,
prediction='{prediction}')
pointwise_judge_prompt = (
pointwise_singleturn_base_prompt.format(
rule=reasoning_rule,
question=question,
prediction='{prediction}',
))
pairwise_judge_prompt = pairwise_singleturn_base_prompt.format(
rule=reasoning_rule,
question=question,
prediction='{prediction}',
prediction2='{prediction2}')
prediction2='{prediction2}',
)
elif category in ['人类对齐', '角色扮演', '日常对话']:
pointwise_judge_prompt = pointwise_singleturn_base_prompt.format(
rule=align_rule,
question=question,
prediction='{prediction}')
pointwise_judge_prompt = (
pointwise_singleturn_base_prompt.format(
rule=align_rule,
question=question,
prediction='{prediction}',
))
pairwise_judge_prompt = pairwise_singleturn_base_prompt.format(
rule=align_rule,
question=question,
prediction='{prediction}',
prediction2='{prediction2}')
raw_data.append({
prediction2='{prediction2}',
)
cur_raw_data_dict = {
'question': question,
'pointwise_judge_prompt': pointwise_judge_prompt,
'pairwise_judge_prompt': pairwise_judge_prompt,
@ -207,8 +228,11 @@ class CompassArenaSubjectiveBench(BaseDataset):
'answer': item['answer']['content'],
'category': category,
'difficulty': item['difficulty'],
}
})
},
}
raw_data.append(cur_raw_data_dict)
elif 'multiturn' in name:
for item in json_data:
category = item['category']
@ -218,37 +242,45 @@ class CompassArenaSubjectiveBench(BaseDataset):
pairwise_judge_prompt = pairwise_multiturn_base_prompt.format(
rule=writing_rule,
prediction='{prediction}',
prediction2='{prediction2}')
prediction2='{prediction2}',
)
elif category in ['领域知识问答']:
pointwise_judge_prompt = pointwise_multiturn_base_prompt.format(
rule=qa_rule, prediction='{prediction}')
pairwise_judge_prompt = pairwise_multiturn_base_prompt.format(
rule=qa_rule,
prediction='{prediction}',
prediction2='{prediction2}')
prediction2='{prediction2}',
)
elif category in ['推理', '代码']:
pointwise_judge_prompt = pointwise_multiturn_base_prompt.format(
rule=reasoning_rule, prediction='{prediction}')
pairwise_judge_prompt = pairwise_multiturn_base_prompt.format(
rule=reasoning_rule,
prediction='{prediction}',
prediction2='{prediction2}')
prediction2='{prediction2}',
)
elif category in ['人类对齐', '角色扮演', '日常对话']:
pointwise_judge_prompt = pointwise_multiturn_base_prompt.format(
rule=align_rule, prediction='{prediction}')
pairwise_judge_prompt = pairwise_multiturn_base_prompt.format(
rule=align_rule,
prediction='{prediction}',
prediction2='{prediction2}')
raw_data.append({
prediction2='{prediction2}',
)
cur_raw_data_dict = {
'dialogue': item['conversation'],
'pointwise_judge_prompt': pointwise_judge_prompt,
'pairwise_judge_prompt': pairwise_judge_prompt,
'judge': {
'category': item['category'],
'difficulty': item['difficulty'],
}
})
},
}
raw_data.append(cur_raw_data_dict)
dataset = Dataset.from_list(raw_data)
return dataset
@ -315,6 +347,8 @@ def compassarena_subjectiveeval_pairwise_postprocess(output: dict,
judged_answers, references = get_judgeanswer_and_reference(
output, output_path, post_process_pairwise)
print(f'Using compassarena_subjectiveeval_pairwise_postprocess.')
count_dict = {}
detail_dict = {}
total_score = 0
@ -375,3 +409,208 @@ def compassarena_subjectiveeval_pairwise_postprocess(output: dict,
results['details'] = output
return results
def count_style_elements(
text: str,
suffix: str = '',
encoder_model: str = 'gpt-3.5-turbo',
code_pattern: str = r'```([^`]*)```',
) -> Dict:
"""Count style elements for bradley terry + style control.
Args:
text (str): Text to calculate style features from.
suffix (str, optional): Suffix to append to the result keys (optional).
code_pattern (str): Refex pattern to match code blocks.
Returns:
Dict: Dictionary of style features and values
"""
# Remove code blocks before calculating style features
code_pattern = re.compile(code_pattern)
blocks = code_pattern.findall(text)
for block in blocks:
text = text.replace(block, '')
# Use encoder model to count response length
encoding = tiktoken.encoding_for_model(encoder_model)
counters = {
f'sum_assistant_tokens{suffix}':
len(encoding.encode(text, allowed_special='all')),
f'header_count{suffix}': {
'h1': len(re.findall(r'^#{1}\s', text, re.MULTILINE)),
'h2': len(re.findall(r'^#{2}\s', text, re.MULTILINE)),
'h3': len(re.findall(r'^#{3}\s', text, re.MULTILINE)),
'h4': len(re.findall(r'^#{4}\s', text, re.MULTILINE)),
'h5': len(re.findall(r'^#{5}\s', text, re.MULTILINE)),
'h6': len(re.findall(r'^#{6}\s', text, re.MULTILINE)),
},
f'list_count{suffix}': {
'ordered': len(re.findall(r'^\s*\d+\.\s', text, re.MULTILINE)),
'unordered': len(re.findall(r'^\s*[-*+]\s', text, re.MULTILINE)),
},
f'bold_count{suffix}': {
'double_star': len(re.findall(r'\*\*[^*\n]+\*\*', text)),
'double_underscore': len(re.findall(r'__[^_\n]+__', text)),
},
# f"emoji_count{suffix}": len(demoji.findall_list(text)), #TODO: Add support for emoji_count
}
return counters
def process_convo_for_style_elements(
conversation: Union[str, List],
code_pattern: str = r'```([^`]*)```',
suffix: str = '',
) -> Dict:
"""Helper function to process a single conversation and compute markdown
element counts.
Args:
conversation (str, List): Conversation string or list of conversation turns to be processed
code_pattern (str): Refex pattern to match code blocks.
suffix (str, optional): Suffix to append to the result keys (optional).
Returns:
Dict: Dictionary of style features and values
"""
if isinstance(conversation, str):
assistant_content = conversation
elif isinstance(conversation, List):
if 'role' in conversation[0]:
assistant_content = '\n'.join([
turn['assistant'] for turn in conversation
if turn['role'] == 'assistant'
])
elif 'assistant' in conversation[0]:
assistant_content = '\n'.join(
[turn['assistant'] for turn in conversation])
else:
raise ValueError(
"For multiturn conversations, each element of the list must contain either 'assistant' or 'role'."
)
else:
raise ValueError(
f'`conversation` must be a list or str. Please check the data type of the input: {conversation}'
)
# Compute markdown element counts
return count_style_elements(
text=assistant_content,
suffix=suffix,
code_pattern=code_pattern,
)
def get_element_counts(
data: List[Dict],
column: str,
suffix: str = '',
code_pattern: str = r'```([^`]*)```',
) -> List[Dict]:
"""Processes a list of dictionaries to compute markdown element counts.
Args:
data (list): Input data, either a list of dictionaries.
column (str): The key or column name containing the conversation data.
suffix (str): Suffix to append to the result keys (optional).
Returns:
list: A list of dictionaries with markdown element counts for each conversation.
"""
# Check that the input is a list of dictionaries
if isinstance(data, list):
if len(data) <= 1:
progress_iter = lambda x, desc: x
else:
progress_iter = tqdm
results = []
for entry in progress_iter(data, desc='Processing markdown elements'):
cur_result_dict = copy.deepcopy(entry)
cur_result_dict.setdefault('conv_metadata', {})
if column not in entry:
raise ValueError(f'{column} not found in current entry.')
conversation = entry.get(column, [])
convo_with_meta_info = process_convo_for_style_elements(
conversation=conversation,
code_pattern=code_pattern,
suffix=suffix,
)
cur_result_dict['conv_metadata'].update(convo_with_meta_info)
results.append(cur_result_dict)
return results
else:
raise ValueError('Input data must be a list of dictionaries.')
@DICT_POSTPROCESSORS.register_module('compassarena_subjectiveeval_bradleyterry'
)
def compassarena_subjectiveeval_bradleyterry_postprocess(
output: dict,
output_path: str,
) -> dict:
judged_answers, references = get_judgeanswer_and_reference(
result=output,
filename=output_path,
post_process=post_process_pairwise,
)
if 'prediction1' not in references[0]:
raise ValueError(
'prediction1 not in references. Set `keep_predictions=True` for LMEvaluator in dataset config and retry.'
)
if 'prediction2' not in references[0]:
raise ValueError(
'prediction2 not in references. Set `keep_predictions=True` for LMEvaluator in dataset config and retry.'
)
results = {}
matches = []
for judged_answer, reference in zip(judged_answers, references):
cur_dict = {}
if judged_answer in ['A>>B', 'B<<A', 'A>B', 'B<A']:
cur_dict['winner'] = 'model_a'
elif judged_answer in ['A=B', 'B=A']:
cur_dict['winner'] = 'tie'
elif judged_answer in ['A<B', 'B>A', 'A<<B', 'B>>A']:
cur_dict['winner'] = 'model_b'
else:
continue
cur_dict['category'] = reference['category']
cur_dict['difficulty'] = reference['difficulty']
cur_dict['model_a'] = reference['answer1']
cur_dict['model_b'] = reference['answer2']
cur_dict['prediction1'] = reference['prediction1']
cur_dict['prediction2'] = reference['prediction2']
matches.append(cur_dict)
### ---------- Add Style Metadata ---------- ###
matches = get_element_counts(
data=matches,
column='prediction1',
suffix='_a',
)
matches = get_element_counts(
data=matches,
column='prediction2',
suffix='_b',
)
results['matches'] = matches
# results["details"] = output
return results

View File

@ -5,6 +5,7 @@ import os.path as osp
from datasets import Dataset
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from ..base import BaseDataset
@ -13,6 +14,7 @@ from ..base import BaseDataset
class CompassBenchCheklistDataset(BaseDataset):
def load(self, path: str, name: str, *args, **kwargs):
path = get_data_path(path, local_mode=True)
filename = osp.join(path, f'{name}.json')
raw_data = []
with open(filename, 'r', encoding='utf-8') as f:

View File

@ -3,14 +3,15 @@ def get_judgeanswer_and_reference(result, filename, post_process):
"""Extract judgements (scores) and references.
Args:
dataset (ConfigDict): Dataset config.
subdir_path (str): Model path in results dir.
result (ConfigDict): Dataset config.
filename (str): Model path in results dir.
post_process (function): The pre-defined extract function.
"""
if len(result) == 0:
print('*' * 100)
print('There are no results for ' + filename)
print('*' * 100)
judged_answers = []
references = []
for k, v in result.items():
@ -21,10 +22,12 @@ def get_judgeanswer_and_reference(result, filename, post_process):
# else:
# print(v['prediction'])
# print('-' * 128)
if len(judged_answers) <= 0.95 * len(result):
print('*' * 100)
print(
f'For your {filename} judge. Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!'
)
print('*' * 100)
return judged_answers, references

View File

@ -1,5 +1,6 @@
import json
import os
import random
import re
import time
from concurrent.futures import ThreadPoolExecutor
@ -9,6 +10,7 @@ from typing import Dict, List, Optional, Union
import httpx
import jieba
import requests
from tqdm import tqdm
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList
@ -19,6 +21,8 @@ PromptType = Union[PromptList, str]
OPENAI_API_BASE = os.path.join(
os.environ.get('OPENAI_BASE_URL', 'https://api.openai.com/v1/'),
'chat/completions')
OPENAISDK_API_BASE = os.environ.get('OPENAI_BASE_URL',
'https://api.openai.com/v1/')
O1_MODEL_LIST = [
'o1-preview-2024-09-12',
@ -170,9 +174,11 @@ class OpenAI(BaseAPIModel):
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs)))
tqdm(executor.map(self._generate, inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs)),
total=len(inputs),
desc='Inferencing'))
return results
def _generate(self, input: PromptType, max_out_len: int,
@ -476,7 +482,7 @@ class OpenAISDK(OpenAI):
key: str | List[str] = 'ENV',
org: str | List[str] | None = None,
meta_template: Dict | None = None,
openai_api_base: str = OPENAI_API_BASE,
openai_api_base: str | List[str] = OPENAISDK_API_BASE,
openai_proxy_url: Optional[str] = None,
mode: str = 'none',
logprobs: bool | None = False,
@ -508,6 +514,10 @@ class OpenAISDK(OpenAI):
max_completion_tokens=max_completion_tokens)
from openai import OpenAI
# support multiple api_base for acceleration
if isinstance(openai_api_base, List):
openai_api_base = random.choice(openai_api_base)
if self.proxy_url is None:
self.openai_client = OpenAI(base_url=openai_api_base, api_key=key)
else:

View File

@ -1,5 +1,4 @@
# flake8: noqa: E501
# yapf: disable
import os.path as osp
import random
import re
@ -27,7 +26,13 @@ def extract_dicts(data):
return predictions
def order_preds_and_record_references(predictions, references, infer_order, seed=666):
def order_preds_and_record_references(
predictions: List,
references: List,
infer_order: List,
seed: int = 666,
keep_preds: bool = False,
):
"""Order predictions based on args and recording regrading references.
Args:
@ -35,23 +40,41 @@ def order_preds_and_record_references(predictions, references, infer_order, seed
references (List): List of reference based on each problem.
infer_order (str, optional): The mode of inference order.
seed (int, optional): Random seed.
keep_preds (bool, optional): Whether to save model predictions in references. This will be available as input in postprocessor. Defaults to False.
"""
random.seed(seed)
list_of_preds = [[] for _ in range(len(predictions))]
for i in range(len(predictions[0]['model_preds'])):
preds = [[pred['model_preds'][i], pred['model_name']] for pred in predictions]
preds = [[pred['model_preds'][i], pred['model_name']]
for pred in predictions]
if infer_order == 'random':
random.shuffle(preds)
for j in range(len(preds)):
list_of_preds[j].append(preds[j][0])
references[i][f'answer{j+1}'] = preds[j][1]
if keep_preds:
references[i][f'prediction{j+1}'] = preds[j][0]
if infer_order == 'double':
assert len(predictions) == 2
list_of_preds = [a + b for a, b in zip(list_of_preds, reversed(list_of_preds))]
list_of_preds = [
a + b for a, b in zip(list_of_preds, reversed(list_of_preds))
]
reversed_references = []
for item in references:
reversed_item = item.copy()
reversed_item['answer1'], reversed_item['answer2'] = reversed_item['answer2'], reversed_item['answer1']
reversed_item['answer1'], reversed_item['answer2'] = (
reversed_item['answer2'],
reversed_item['answer1'],
)
if keep_preds:
reversed_item['prediction1'], reversed_item['prediction2'] = (
reversed_item['prediction2'],
reversed_item['prediction1'],
)
reversed_references.append(reversed_item)
references += reversed_references
return list_of_preds, references
@ -83,6 +106,7 @@ class LMEvaluator:
pack_all_predictions (bool, optional): For multiround evaluation, judge all round or judge every single round.
pred_postprocessor (ConfigDict): The model prediction's postprocessor
config.
keep_predictions (bool): Whether to save model predictions in references. Useful when postprocessor requires model predictions as input to calculate additional features (e.g. response length, markdown list counts, ...). Defaults to False.
"""
def __init__(
@ -95,6 +119,7 @@ class LMEvaluator:
dataset_cfg: Optional[ConfigDict] = None,
pred_postprocessor: Optional[ConfigDict] = None,
dict_postprocessor: Optional[ConfigDict] = None,
keep_predictions: bool = False,
) -> None:
self.output_path = output_path
out_dir, out_name = osp.split(output_path)
@ -103,34 +128,48 @@ class LMEvaluator:
self.prompt_tmpl = ICL_PROMPT_TEMPLATES.build(prompt_template)
if meta_review_prompt_template is not None:
self.meta_review_prompt_tmpl = ICL_PROMPT_TEMPLATES.build(meta_review_prompt_template)
self.meta_review_prompt_tmpl = ICL_PROMPT_TEMPLATES.build(
meta_review_prompt_template)
max_out_len = judge_cfg.get('max_out_len', None)
batch_size = judge_cfg.get('batch_size', None)
model = build_model_from_cfg(model_cfg=judge_cfg)
self.inferencer = GenInferencer(model,
max_out_len=max_out_len,
batch_size=batch_size,
output_json_filepath=out_dir,
output_json_filename=out_name)
self.inferencer = GenInferencer(
model,
max_out_len=max_out_len,
batch_size=batch_size,
output_json_filepath=out_dir,
output_json_filename=out_name,
)
self.logger = get_logger()
self.dataset_cfg = dataset_cfg
self.pack_all_predictions = pack_all_predictions
self.pred_postprocessor = pred_postprocessor
self.dict_postprocessor = dict_postprocessor
self.keep_predictions = keep_predictions
def score(self,
predictions,
judgements: Optional[List] = None,
references: Optional[List] = None,
meta: Optional[bool] = False,
infer_order: Optional[str] = 'random') -> Dict:
def score(
self,
predictions,
judgements: Optional[List] = None,
references: Optional[List] = None,
meta: Optional[bool] = False,
infer_order: Optional[str] = 'random',
) -> Dict:
dup_indices = []
if isinstance(predictions, list):
"""Apply to multi-model comparison."""
if references is None:
references = [{} for _ in range(len(predictions[0]['model_preds']))]
predictions, references = order_preds_and_record_references(predictions, references, infer_order)
references = [
{} for _ in range(len(predictions[0]['model_preds']))
]
predictions, references = order_preds_and_record_references(
predictions=predictions,
references=references,
infer_order=infer_order,
keep_preds=self.keep_predictions,
)
# calculate dupicated predictions numbers
total_predictions_num = len(predictions[0])
@ -145,7 +184,9 @@ class LMEvaluator:
elif isinstance(predictions, dict):
"""Apply to single-model scoring."""
if references is None:
references = [{} for _ in range(len(predictions[0]['model_preds']))]
references = [
{} for _ in range(len(predictions[0]['model_preds']))
]
predictions = [predictions['model_preds']]
# Due to the rarity of identical predictions, we have temporarily disabled the plagiarism detection feature.
@ -166,20 +207,27 @@ class LMEvaluator:
gold_key = 'obj_gold'
pred_dict[key] = predictions[i]
pred_dict[gold_key] = references
pred_dict[key + '_en_word_count'] = [count_english_words(j) for j in predictions[i]]
pred_dict[key + '_cn_word_count'] = [count_chinese_characters(j) for j in predictions[i]]
pred_dict[key + '_en_word_count'] = [
count_english_words(j) for j in predictions[i]
]
pred_dict[key + '_cn_word_count'] = [
count_chinese_characters(j) for j in predictions[i]
]
if judgements:
for i in range(len(judgements)):
key = 'judgement' if i == 0 else f'judgement{i + 1}'
pred_dict[key] = judgements[i]['model_preds']
for j in range(len(references)):
references[j]['judge_model' + str(i + 1)] = judgements[i]['model_name']
references[j]['judge_model' +
str(i + 1)] = judgements[i]['model_name']
elif isinstance(predictions[0][0], list):
# multi round for format like [[[{'round':1, 'user':'', 'assistant':''}, {'round':2, 'user':'', 'assistant':''}], [{'round':1, 'user':'', 'assistant':''}, {'round':2, 'user':'', 'assistant':''}]]]
if self.pack_all_predictions:
for i in range(len(predictions)):
key = 'prediction' if i == 0 else f'prediction{i + 1}'
predictions[i] = [str(_) for _ in predictions[i]] # Fix the dictionary order to prevent the following situations: {'assistant':'', 'round':2, 'user':''}
predictions[i] = [
str(_) for _ in predictions[i]
] # Fix the dictionary order to prevent the following situations: {'assistant':'', 'round':2, 'user':''}
pred_dict[key] = predictions[i]
else:
for i in range(len(predictions)):
@ -192,44 +240,62 @@ class LMEvaluator:
raise NotImplementedError(
'Not applied meta-reivew judge on multi-round dataset')
else:
raise NotImplementedError(f'{predictions[0][0]} with type {type(predictions[0][0])}, please check the postprocess you add to the prediction string is right or not, we suggest to return an empty string but not None')
raise NotImplementedError(
f'{predictions[0][0]} with type {type(predictions[0][0])}, please check the postprocess you add to the prediction string is right or not, we suggest to return an empty string but not None'
)
if self.dataset_cfg:
dataset = build_dataset_from_cfg(self.dataset_cfg)
if infer_order == 'double':
new_ds = {k: dataset.test[k] * 2 for k in dataset.test.column_names}
new_ds = {
k: dataset.test[k] * 2
for k in dataset.test.column_names
}
dataset.reader.dataset['test'] = Dataset.from_dict(new_ds)
if len(dup_indices) != 0:
remaining_indices = [idx for idx in range(len(dataset.test)) if idx not in dup_indices]
dataset.reader.dataset['test'] = dataset.test.select(remaining_indices)
print(f'Among total {total_predictions_num} predictions, there are {len(dup_indices)} predictions totally same, which are removed!')
remaining_indices = [
idx for idx in range(len(dataset.test))
if idx not in dup_indices
]
dataset.reader.dataset['test'] = dataset.test.select(
remaining_indices)
print(
f'Among total {total_predictions_num} predictions, there are {len(dup_indices)} predictions totally same, which are removed!'
)
for k, v in pred_dict.items():
dataset.reader.dataset['test'] = dataset.test.add_column(k, v)
dataset.reader.input_columns.append(k)
if references:
dataset.reader.input_columns.append('reference')
dataset.reader.dataset['test'] = dataset.test.add_column('reference', references)
dataset.reader.dataset['test'] = dataset.test.add_column(
'reference', references)
else:
# build a default dataset just for comparison
from opencompass.datasets.lmeval import LMEvalDataset
input_columns = list(pred_dict.keys())
if references:
input_columns.append('reference')
dataset = LMEvalDataset(
reader_cfg=dict(input_columns=input_columns, output_column=None, train_split='test'),
reader_cfg=dict(input_columns=input_columns,
output_column=None,
train_split='test'),
reference=references,
**pred_dict
**pred_dict,
)
dataset.reader.output_column = 'reference'
retriever = ZeroRetriever(dataset)
if meta:
self.inferencer.inference(retriever=retriever, prompt_template=self.meta_review_prompt_tmpl)
self.inferencer.inference(
retriever=retriever,
prompt_template=self.meta_review_prompt_tmpl)
else:
self.inferencer.inference(retriever=retriever, prompt_template=self.prompt_tmpl)
self.inferencer.inference(retriever=retriever,
prompt_template=self.prompt_tmpl)
output = mmengine.load(self.output_path)
return self.postprocess(output)

View File

@ -99,7 +99,7 @@ class DefaultSubjectiveSummarizer:
else:
base_models_list = [item['abbr'] for item in base_models]
for base_model_abbr in base_models_list:
for idx, base_model_abbr in enumerate(base_models_list):
dataset_abbr = dataset_abbr_from_cfg(dataset)
origin_path = get_infer_output_path(model, dataset, osp.join(self.work_dir, 'results'))
if base_model_abbr != '':
@ -111,7 +111,13 @@ class DefaultSubjectiveSummarizer:
continue
result = mmengine.load(filepath)
result.pop('details', None)
raw_results[model_abbr][dataset_abbr] = result
if idx == 0:
raw_results[model_abbr][dataset_abbr] = result
else:
for key, value in result.items():
raw_results[model_abbr][dataset_abbr][key] = (raw_results[model_abbr][dataset_abbr][key] * idx + value) / (idx + 1)
if 'error' in result:
self.logger.debug(f'error in {model_abbr} {dataset_abbr} {result["error"]}')
continue
@ -132,7 +138,12 @@ class DefaultSubjectiveSummarizer:
f'{dataset_abbr} has different metrics: {dataset_metrics[dataset_abbr]} vs {_dm}'
else:
dataset_metrics[dataset_abbr] = _dm
parsed_results[model_abbr][dataset_abbr] = _rst
if idx == 0:
parsed_results[model_abbr][dataset_abbr] = _rst
else:
for key, value in _rst.items():
parsed_results[model_abbr][dataset_abbr][key] = (parsed_results[model_abbr][dataset_abbr][key] * idx + value) / (idx + 1)
# dataset_eval_mode: {dataset_abbr: eval_mode}
dataset_eval_mode : Dict[str, str] = {}

View File

@ -6,6 +6,7 @@ from .arenahard import ArenaHardSummarizer
from .charm import CharmMemSummarizer
from .common_summarizer import CommonSummarizer
from .compass_arena import CompassArenaSummarizer
from .compass_arena_bradley_terry import CompassArenaBradleyTerrySummarizer
from .compassbench import CompassBenchSummarizer
from .corev2 import Corev2Summarizer
from .creationbench import CreationBenchSummarizer
@ -15,5 +16,6 @@ from .followbench import FollowBenchSummarizer
from .mtbench import MTBenchSummarizer
from .mtbench101 import MTBench101Summarizer
from .multiround import MultiroundSummarizer
from .qacompassbench import QaCompassBenchSummarizer
from .subjective import SubjectiveSummarizer
from .wildbench import WildBenchPairSummarizer, WildBenchSingleSummarizer

View File

@ -73,6 +73,7 @@ def get_capability_results(
with open(fout, 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([model_abbr] + [judge_model_abbr] + [dataset_abbr] + [capability_avg_ratings[column] for column in columns])
return {column:capability_avg_ratings[column] for column in columns if column != ''}
class CommonSummarizer(CompassArenaSummarizer):
@ -113,6 +114,7 @@ class CommonSummarizer(CompassArenaSummarizer):
fout_flag = 0
output_tmp_file = osp.join(output_dir, 'result.csv')
output_file = osp.join(output_dir, 'total_result.csv')
json_result={}
for eval_model_cfg in self.eval_model_cfgs:
for judge_model_cfg in self.judge_model_cfgs:
eval_model_abbr = model_abbr_from_cfg(eval_model_cfg)
@ -125,7 +127,10 @@ class CommonSummarizer(CompassArenaSummarizer):
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
show_dataset_abbr = dataset_abbr_from_cfg(dataset)
get_capability_results(judged_answers, references, output_tmp_file, fout_flag, show_model_abbr, show_judge_model_abbr, show_dataset_abbr)
tmp_result = get_capability_results(judged_answers, references, output_tmp_file, fout_flag, show_model_abbr, show_judge_model_abbr, show_dataset_abbr)
if show_judge_model_abbr not in json_result:
json_result[show_judge_model_abbr] = {}
json_result[show_judge_model_abbr][show_model_abbr] = tmp_result
fout_flag += 1
else:
print(subdir_path + ' is not exist! please check!')
@ -144,3 +149,4 @@ class CommonSummarizer(CompassArenaSummarizer):
f.write(','.join(map(str, line)) + '\n')
print(t)
print(output_file)
return {'qa_bench_' + show_dataset_abbr:json_result}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,189 @@
# flake8: noqa
# yapf: disable
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product
import pandas as pd
from mmengine import ConfigDict
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.summarizers.subjective.utils import (
get_judgeanswer_and_reference, get_outdir)
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
def post_process_wildbench_pair(judgement: str):
pattern = r'\"choice\": \"(.*?)\"'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None
class QaCompassBenchSummarizer:
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['datasets'][0]['base_models']
self.compare_models = self.cfg['eval']['partitioner']['models']
self.judge_models = self.cfg.get('judge_models', None)
self.meta_judge_model = self.cfg.eval.partitioner.get(
'meta_judge_model', None)
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
self.judge_function = post_process_wildbench_pair
self.check_pos_bias = check_pos_bias
def get_score(self, time_str):
output_dir, results_folder = get_outdir(self.cfg, time_str)
model_combinations = list(
product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs(
[combo for combo in model_combinations if combo[0] != combo[1]])
if self.meta_judge_model is not None:
self.judge_models.append(self.meta_judge_model)
scores = {}
for idx, judge_model_cfg in enumerate(self.judge_models):
judge_model = model_abbr_from_cfg(judge_model_cfg)
scores[judge_model] = {}
for dataset in self.cfg['datasets']:
dataset_abbr = dataset_abbr_from_cfg(dataset)
dataset_root, dataset_detail = (
dataset_abbr.split('/')[0],
dataset_abbr.split('/')[1],
)
scores[judge_model][dataset_abbr] = {}
for model_pair in unique_combinations:
base_model = model_pair[0]['abbr']
compare_model = model_pair[1]['abbr']
if idx == len(self.judge_models):
subdir = (base_model + '_' + compare_model +
'_summarized-by--' + judge_model)
else:
subdir = (base_model + '_' + compare_model +
'_judged-by--' + judge_model)
subdir_path = os.path.join(results_folder, subdir)
if not os.path.isdir(subdir_path):
print(subdir_path + ' is not exist! please check!')
scores[judge_model][dataset_abbr][compare_model] = None
continue
judged_answers, references = get_judgeanswer_and_reference(
dataset, subdir_path, self.judge_function)
win_base_model = defaultdict(float)
win_compare_model = defaultdict(float)
score_mapping = {
'A++': 1,
'A+': 0.5,
'A=B': 0,
'B+': -0.5,
'B++': -1,
}
cnt = defaultdict(float)
for judged_answer, reference in zip(
judged_answers, references):
if judged_answer not in score_mapping:
continue
else:
flag = (1 if reference['answer1'] == base_model
else -1)
score_1 = score_mapping[judged_answer] * flag
score_2 = -score_1
cnt[reference['category']] += 1
win_compare_model[reference['category']] += score_2
win_base_model[reference['category']] += score_1
cnt[dataset_abbr] += 1
win_compare_model[dataset_abbr] += score_2
win_base_model[dataset_abbr] += score_1
for key, value in cnt.items():
# print(key , value)
win_base_model[key] = win_base_model[key] / value * 100
win_base_model[key] = round(win_base_model[key], 2)
win_compare_model[key] = (win_compare_model[key] /
value * 100)
win_compare_model[key] = round(win_compare_model[key],
2)
scores[judge_model][dataset_abbr][
compare_model] = win_compare_model
return scores
def summarize(
self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
scores = self.get_score(time_str)
output_dir, results_folder = get_outdir(self.cfg, time_str)
json_result={}
for judge_abbr, judge_scores in scores.items():
if judge_abbr not in json_result:
json_result[judge_abbr] = {}
new_score = {}
items = []
for dataset_name, model_scores in judge_scores.items():
if dataset_name not in new_score:
new_score[dataset_name] = {}
for model_name, cate_score in model_scores.items():
for category, score in cate_score.items():
items.append(category)
if category not in new_score:
new_score[category] = {}
if model_name not in new_score[category]:
new_score[category][model_name] = {}
new_score[category][model_name]['总分'] = score
if model_name not in json_result[judge_abbr]:
json_result[judge_abbr][model_name] = {}
json_result[judge_abbr][model_name][category] = score
df = pd.DataFrame()
# Iterate over the MAP and new_score to populate the DataFrame
for category in items:
category_data = []
for model, scores in new_score[category].items():
row_data = [model]
# Append the score if available, otherwise append None
row_data.append(scores.get('总分', None))
category_data.append(row_data)
# Create a DataFrame for the category and concatenate with the main DataFrame
new_headers = [category + '_' + item for item in ['总分']]
category_df = pd.DataFrame(category_data,
columns=[category] + new_headers)
df = pd.concat([df, category_df.set_index(category)], axis=1)
df_transposed = df.T
output_filename = osp.join(
output_dir,
'summarized-by--' + judge_abbr + '-' + '-report.csv',
)
transposed_csv_file_path = output_filename
df_transposed.to_csv(transposed_csv_file_path)
print(f'save to {output_filename}')
return {'qabench': json_result}

View File

@ -1,13 +1,45 @@
import copy
import os
import re
from abc import abstractmethod
from typing import List
from typing import List, Optional
from mmengine.config import ConfigDict
from opencompass.utils import get_infer_output_path, task_abbr_from_cfg
def extract_role_pred(s: str, begin_str: Optional[str],
end_str: Optional[str]) -> str:
"""Extract the role prediction from the full prediction string. The role
prediction may be the substring between the begin and end string.
Args:
s (str): Full prediction string.
begin_str (str): The beginning string of the role
end_str (str): The ending string of the role.
Returns:
str: The extracted role prediction.
"""
start = 0
end = len(s)
if begin_str and re.match(r'\s*', begin_str) is None:
begin_idx = s.find(begin_str)
if begin_idx != -1:
start = begin_idx + len(begin_str)
if end_str and re.match(r'\s*', end_str) is None:
# TODO: Support calling tokenizer for the accurate eos token
# and avoid such hardcode
end_idx = s.find(end_str, start)
if end_idx != -1:
end = end_idx
return s[start:end]
class BaseTask:
"""Base class for all tasks. There are two ways to run the task:
1. Directly by calling the `run` method.

View File

@ -4,13 +4,12 @@ import fnmatch
import math
import os
import os.path as osp
import re
import statistics
import sys
import time
from collections import Counter
from inspect import signature
from typing import List, Optional
from typing import List
import mmengine
from mmengine.config import Config, ConfigDict
@ -18,43 +17,12 @@ from mmengine.utils import mkdir_or_exist
from opencompass.registry import (ICL_EVALUATORS, MODELS, TASKS,
TEXT_POSTPROCESSORS)
from opencompass.tasks.base import BaseTask
from opencompass.tasks.base import BaseTask, extract_role_pred
from opencompass.utils import (build_dataset_from_cfg, dataset_abbr_from_cfg,
get_infer_output_path, get_logger,
task_abbr_from_cfg)
def extract_role_pred(s: str, begin_str: Optional[str],
end_str: Optional[str]) -> str:
"""Extract the role prediction from the full prediction string. The role
prediction may be the substring between the begin and end string.
Args:
s (str): Full prediction string.
begin_str (str): The beginning string of the role
end_str (str): The ending string of the role.
Returns:
str: The extracted role prediction.
"""
start = 0
end = len(s)
if begin_str and re.match(r'\s*', begin_str) is None:
begin_idx = s.find(begin_str)
if begin_idx != -1:
start = begin_idx + len(begin_str)
if end_str and re.match(r'\s*', end_str) is None:
# TODO: Support calling tokenizer for the accurate eos token
# and avoid such hardcode
end_idx = s.find(end_str, start)
if end_idx != -1:
end = end_idx
return s[start:end]
@TASKS.register_module()
class OpenICLEvalTask(BaseTask):
"""OpenICL Evaluation Task.

View File

@ -12,8 +12,7 @@ from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from opencompass.registry import ICL_EVALUATORS, MODELS, TEXT_POSTPROCESSORS
from opencompass.tasks.base import BaseTask
from opencompass.tasks.openicl_eval import extract_role_pred
from opencompass.tasks.base import BaseTask, extract_role_pred
from opencompass.utils import (build_dataset_from_cfg, dataset_abbr_from_cfg,
deal_with_judge_model_abbr, get_data_path,
get_infer_output_path, get_logger,

View File

@ -11,6 +11,7 @@ from .lark import * # noqa
from .logging import * # noqa
from .menu import * # noqa
from .model_postprocessors import * # noqa
from .network import * # noqa
from .postprocessors import * # noqa
from .prompt import * # noqa
from .text_postprocessors import * # noqa

Some files were not shown because too many files have changed in this diff Show More