mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
feat results_station.py
This commit is contained in:
parent
465e93e10e
commit
f5dddf4e45
147
tools/results_station.py
Normal file
147
tools/results_station.py
Normal file
@ -0,0 +1,147 @@
|
||||
import os
|
||||
import json
|
||||
from dotenv import load_dotenv
|
||||
import argparse
|
||||
import yaml
|
||||
|
||||
load_dotenv()
|
||||
RESULTS_STATION_PATH = os.getenv("RESULTS_STATION_PATH")
|
||||
|
||||
data_file_map = {
|
||||
'ifeval': 'IFEval',
|
||||
|
||||
|
||||
}
|
||||
|
||||
data_prefix_map = {
|
||||
|
||||
|
||||
}
|
||||
|
||||
with open('dataset-index.yml', 'r') as f1:
|
||||
data_list = yaml.load(f1, Loader=yaml.FullLoader)
|
||||
f1.close()
|
||||
data_searchable_list = [next(iter(i.keys())) for i in data_list]
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='connect to results station')
|
||||
|
||||
parser.add_argument('-sp', '--station-path', type=str, default=None, help='if no env path, use this.')
|
||||
parser.add_argument('-p', '--my-path', type=str, default=None, help='your operation path.')
|
||||
parser.add_argument('-op', '--operation', type=str, default='d', help='u:update, d:download, ls: show dataset and model options')
|
||||
parser.add_argument('-d', '--dataset', type=str, default='mmlu_pro', help='target dataset name')
|
||||
parser.add_argument('-m', '--model', type=str, default='deepseek-v2_5-turbomind', help='target model name')
|
||||
# parser.add_argument('-all', '--all-transfer', action='store_true', default=False, help='transfer all files under the path')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def read_json(path):
|
||||
results = []
|
||||
for i in path:
|
||||
with open(i, 'r') as f:
|
||||
results.append(json.load(f))
|
||||
f.close()
|
||||
return results
|
||||
|
||||
|
||||
def load_json_files_by_prefix(prefix, target_path):
|
||||
if prefix in data_file_map.keys():
|
||||
prefix = data_file_map[prefix]
|
||||
result_dict = {}
|
||||
for filename in os.listdir(target_path):
|
||||
if filename.startswith(prefix) and filename.endswith(".json"):
|
||||
file_path = os.path.join(target_path, filename)
|
||||
with open(file_path, "r", encoding="utf-8") as file:
|
||||
json_data = json.load(file)
|
||||
result_dict[os.path.splitext(filename)[0]] = json_data
|
||||
return result_dict
|
||||
|
||||
|
||||
def main(path, mypath, args):
|
||||
|
||||
if args.dataset not in data_searchable_list:
|
||||
raise ValueError('invalid dataset input!')
|
||||
|
||||
update_path = path + args.dataset if path[-1] == '/' else path + '/' + args.dataset
|
||||
update_filename = args.dataset + '_' + args.model + '.json'
|
||||
update_goal = update_path + '/' + update_filename
|
||||
|
||||
# update from your path to result station
|
||||
if args.operation == 'u':
|
||||
mypath_prediction = (mypath + 'predictions/' + args.model) if mypath[-1] == '/' else (mypath + '/predictions/' + args.model)
|
||||
mypath_result = (mypath + 'results/' + args.model) if mypath[-1] == '/' else (mypath + '/results/' + args.model)
|
||||
|
||||
if os.path.exists(mypath_prediction) and os.path.exists(mypath_result):
|
||||
|
||||
result_dict = load_json_files_by_prefix(args.dataset, mypath_result)
|
||||
prediction_list = []
|
||||
for i in result_dict.keys():
|
||||
prediction_dict = load_json_files_by_prefix(i, mypath_prediction)
|
||||
for j in range(len(prediction_dict)):
|
||||
for k in prediction_dict[i + '_' + str(j)].keys():
|
||||
prediction_list.append(
|
||||
{
|
||||
'prediction': prediction_dict[i + '_' + str(j)][k],
|
||||
'sub_category': i
|
||||
}
|
||||
)
|
||||
update_dict = {
|
||||
'predictions': prediction_list,
|
||||
'results': result_dict,
|
||||
}
|
||||
|
||||
if not os.path.exists(update_path):
|
||||
os.makedirs(update_path)
|
||||
if os.path.exists(update_goal):
|
||||
input("This result exists! Press any key to continue...")
|
||||
with open(update_goal, 'w', encoding="utf-8") as f:
|
||||
json.dump(update_dict, f, ensure_ascii=False, indent=4)
|
||||
f.close()
|
||||
|
||||
|
||||
# read from result station to your path
|
||||
if args.operation == 'd':
|
||||
if not os.path.exists(update_goal):
|
||||
raise ValueError('This result does not exist!')
|
||||
with open(update_goal, 'r', encoding="utf-8") as f:
|
||||
results = json.load(f)
|
||||
f.close()
|
||||
legal_key_set = {'predictions', 'results'}
|
||||
if set(results.keys()) == legal_key_set and isinstance(results['predictions'], list) and isinstance(results['results'], dict):
|
||||
print("Successfully download result from station! you've got a dict with format as follows: \n content['precitions', 'results']")
|
||||
else:
|
||||
raise ValueError('illegal format of the result!')
|
||||
save_path = args.my_path if args.my_path[-1] == '/' else args.my_path + '/'
|
||||
save_path += args.dataset + '/'
|
||||
if not os.path.exists(save_path):
|
||||
os.makedirs(save_path)
|
||||
with open(save_path + update_filename, 'w', encoding="utf-8") as f:
|
||||
json.dump(results, f, ensure_ascii=False, indent=4)
|
||||
f.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
if args.operation == 'ls':
|
||||
print("----DATASET LIST----")
|
||||
print(data_searchable_list)
|
||||
print("----MODEL LIST----")
|
||||
|
||||
else:
|
||||
if RESULTS_STATION_PATH is not None:
|
||||
path = RESULTS_STATION_PATH
|
||||
else:
|
||||
path = args.station_path
|
||||
if path is None:
|
||||
raise ValueError('Please appoint the path of results station!')
|
||||
if not os.path.exists(path):
|
||||
raise ValueError('Not a valid path of results station!')
|
||||
mypath = args.my_path
|
||||
if mypath is None:
|
||||
raise ValueError('Please appoint your own path!')
|
||||
if not os.path.exists(mypath):
|
||||
raise ValueError('Not a valid path of your own path!')
|
||||
main(path, mypath, args)
|
Loading…
Reference in New Issue
Block a user