[Feat] Support LLaVA and mPLUG-Owl (#331)

* refine gitignore

* [Feature]: Add minigpt-4

* [Feature]: Add mm local runner

* [Feature]: Add instructblip

* add otter and llama-adapter

* add owl

* add llama2-adapter and owl

* lint

* [Feature]: Add minigpt-4

* [Feature]: Add instructblip

* add otter and llama-adapter

* add owl

* add llama2-adapter and owl

* lint

* lint

* update

* lint

* lint

* add __init__.py

* update

* update

* update

---------

Co-authored-by: liuyuan <3463423099@qq.com>
This commit is contained in:
Yuanhan Zhang 2023-09-01 23:32:05 +08:00 committed by GitHub
parent b95aea75ce
commit f2dd98ca7a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 700 additions and 5 deletions

View File

@ -0,0 +1,24 @@
# Llama Adapter V2
### Prepare the environment
```sh
cd opencompass/multimodal/models/llama_adapter_v2_multimodal
git clone https://github.com/OpenGVLab/LLaMA-Adapter.git
```
### Start evaluation
#### Slurm
```sh
cd $root
python run.py configs/multimodal/tasks.py --mm-eval --slurm -p $PARTITION
```
#### PyTorch
```sh
cd $root
python run.py configs/multimodal/tasks.py --mm-eval
```

View File

@ -0,0 +1,45 @@
from opencompass.multimodal.models.llama_adapter_v2_multimodal import (
LlamaAadapterMMBenchPostProcessor, LlamaAadapterMMBenchPromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)),
dict(type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'answer', 'options', 'category', 'l2-category',
'index', 'context', 'options_dict'
])
]
dataset = dict(type='opencompass.MMBenchDataset',
data_file='data/mmbench/mmbench_test_20230712.tsv',
pipeline=val_pipeline)
llama_adapter_mmbench_dataloader = dict(batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False))
# model settings
llama_adapter_model = dict(
type='LLaMA-adapter-v2',
llama_dir= # noqa
'/llama_adapter_v2_multimodal',
prompt_constructor=dict(type=LlamaAadapterMMBenchPromptConstructor),
post_processor=dict(type=LlamaAadapterMMBenchPostProcessor))
)
# evaluation settings
llama_adapter_evaluator = [
dict(
type='opencompass.DumpResults',
save_path='work_dirs/llama-adapter-v2-multimodal-mmagibench-v0.1.0.xlsx'
)
]

View File

@ -0,0 +1,24 @@
# MplugOwl
### Prepare the environment
```sh
cd opencompass/multimodal/models/mplug_owl
git clone https://github.com/X-PLUG/mPLUG-Owl.git
```
### Start evaluation
#### Slurm
```sh
cd $root
python run.py configs/multimodal/tasks.py --mm-eval --slurm -p $PARTITION
```
#### PyTorch
```sh
cd $root
python run.py configs/multimodal/tasks.py --mm-eval
```

View File

@ -0,0 +1,48 @@
from opencompass.multimodal.models.mplug_owl import (
MplugOwlMMBenchPostProcessor, MplugOwlMMBenchPromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'answer', 'category', 'l2-category', 'context',
'index', 'options_dict', 'options'
],
),
]
dataset = dict(type='opencompass.MMBenchDataset',
data_file='data/mmbench/mmbench_test_20230712.tsv',
pipeline=val_pipeline)
mplug_owl_mmbench_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
mplug_owl_mmbench_model = dict(
type='mplug_owl-7b',
model_path='/mplug-owl-llama-7b-ft',
prompt_constructor=dict(type=MplugOwlMMBenchPromptConstructor),
post_processor=dict(type=MplugOwlMMBenchPostProcessor)
) # noqa
# evaluation settings
mplug_owl_mmbench_evaluator = [
dict(type='opencompass.DumpResults',
save_path='work_dirs/mplug_owl-7b-mmagibench-v0.1.0.xlsx')
]

View File

@ -13,4 +13,4 @@ load_froms = [minigpt_4_mmbench_load_from]
num_gpus = 8
num_procs = 8
launcher = 'pytorch'
launcher = 'pytorch'

View File

@ -1,5 +1,6 @@
from .mmbench import MMBenchDataset
from .mme import MMEDataset
from .seedbench import SEEDBenchDataset
from .mmbench import MMBenchDataset # noqa: F401, F403
from .mme import MMEDataset # noqa: F401, F403
from .seedbench import SEEDBenchDataset # noqa: F401, F403
__all__ = ['MMBenchDataset', 'SEEDBenchDataset', 'MMEDataset']
__all__ = ['MMBenchDataset'
'SEEDBenchDataset', 'MMEDataset']

View File

@ -8,7 +8,9 @@ if satisfy_requirement('salesforce-lavis'):
if osp.exists('opencompass/multimodal/models/minigpt_4/MiniGPT-4'):
from .minigpt_4 import * # noqa: F401, F403
from .llama_adapter_v2_multimodal import * # noqa: F401, F403
from .llava import * # noqa: F401, F403
from .mplug_owl import * # noqa: F401, F403
from .openflamingo import * # noqa: F401, F403
from .otter import * # noqa: F401, F403
from .visualglm import * # noqa: F401, F403

View File

@ -0,0 +1,8 @@
from .llama_adapter import LLaMA_adapter_v2
from .post_processor import LlamaAadapterMMBenchPostProcessor
from .prompt_constructor import LlamaAadapterMMBenchPromptConstructor # noqa
__all__ = [
'LLaMA_adapter_v2', 'LlamaAadapterMMBenchPostProcessor',
'LlamaAadapterMMBenchPromptConstructor'
]

View File

@ -0,0 +1,306 @@
import json
import os
from pathlib import Path
import clip
import mmengine
import torch
import torch.nn as nn
from llama_adapter_v2_multimodal7b.llama.llama import ModelArgs, Transformer
from llama_adapter_v2_multimodal7b.llama.tokenizer import Tokenizer
from llama_adapter_v2_multimodal7b.llama.utils import sample_top_p
from mmengine.device import get_device
from timm.models.vision_transformer import Block
from opencompass.registry import MM_MODELS
class LLaMA_adapter(nn.Module):
def __init__(self,
llama_ckpt_dir,
llama_tokenizer,
max_seq_len=512,
max_batch_size=1,
clip_model='ViT-L/14',
v_embed_dim=768,
v_depth=8,
v_num_heads=16,
v_mlp_ratio=4.0,
query_len=10,
query_layer=31,
w_bias=False,
w_lora=False,
lora_rank=16,
prompt_constructor=None,
post_processor=None):
super().__init__()
self.device = get_device()
# load llama configs
with open(os.path.join(llama_ckpt_dir, 'params.json'), 'r') as f:
params = json.loads(f.read())
model_args = ModelArgs(max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params)
# 1. clip and clip projector
self.clip, self.clip_transform = clip.load(clip_model)
clip_dim = self.clip.visual.proj.shape[1]
self.clip_proj = nn.Linear(clip_dim, v_embed_dim)
self.clip_proj_norm = nn.LayerNorm(v_embed_dim)
self.query_len = query_len
self.query_layer = query_layer
# 2. visual query, blocks and projector
self.visual_query = nn.Embedding(query_len, v_embed_dim)
self.visual_blocks = nn.ModuleList([
Block(v_embed_dim, v_num_heads, v_mlp_ratio, qkv_bias=True)
for _ in range(v_depth)
])
self.visual_proj = nn.Linear(v_embed_dim, model_args.dim)
self.visual_proj_norm = nn.LayerNorm(model_args.dim)
# 3. adapter query
self.adapter_query = nn.Embedding(query_len * query_layer,
model_args.dim)
# 4. tokenizer
self.tokenizer = Tokenizer(model_path=llama_tokenizer)
# 5. llama
model_args.vocab_size = self.tokenizer.n_words
model_args.w_bias = w_bias
model_args.w_lora = w_lora
model_args.lora_rank = lora_rank
torch.set_default_tensor_type(torch.cuda.HalfTensor)
self.llama = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
ckpts = sorted(Path(llama_ckpt_dir).glob('*.pth'))
for ckpt in ckpts:
ckpt = torch.load(ckpt, map_location='cpu')
self.llama.load_state_dict(ckpt, strict=False)
self.prompt_constructor = mmengine.registry.build_from_cfg(
prompt_constructor, MM_MODELS)
if post_processor is not None:
self.post_processor = mmengine.registry.build_from_cfg(
post_processor, MM_MODELS)
def clip_encode_image(self, x):
# modified from CLIP
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([
self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.clip.visual.positional_embedding.to(x.dtype)
x = self.clip.visual.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.visual.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
# preserve all spatial tokens
x = self.clip.visual.ln_post(x[:, :, :])
if self.clip.visual.proj is not None:
x = x @ self.clip.visual.proj
return x
def forward_visual(self, imgs):
clip_feats = self.clip_encode_image(imgs)
clip_feats = self.clip_proj_norm(self.clip_proj(clip_feats.float()))
visual_query = self.visual_query.weight.unsqueeze(0).repeat(
len(imgs), 1, 1)
visual_query = torch.cat([visual_query, clip_feats], dim=1)
for block in self.visual_blocks:
visual_query = block(visual_query)
visual_query = visual_query[:, :self.query_len, :]
visual_query = self.visual_proj(visual_query)
visual_query = self.visual_proj_norm(visual_query)
return visual_query
@torch.inference_mode()
def forward(self, visual_query, tokens, start_pos: int):
_bsz, seqlen = tokens.shape
h = self.llama.tok_embeddings(tokens)
freqs_cis = self.llama.freqs_cis.to(h.device)
freqs_cis = freqs_cis[start_pos:start_pos + seqlen]
mask = None
mask = torch.full((1, 1, seqlen, seqlen),
float('-inf'),
device=h.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.llama.layers[:-1 * self.query_layer]:
h = layer(h, start_pos, freqs_cis, mask)
adapter = self.adapter_query.weight.reshape(self.query_layer,
self.query_len,
-1).unsqueeze(1)
adapter_index = 0
for layer in self.llama.layers[-1 * self.query_layer:]:
dynamic_adapter = adapter[adapter_index].repeat(_bsz, 1, 1)
dynamic_adapter = dynamic_adapter + visual_query
h = layer(h, start_pos, freqs_cis, mask, dynamic_adapter)
adapter_index = adapter_index + 1
h = self.llama.norm(h)
output = self.llama.output(h[:, -1, :])
return output.float()
def pack_inputs(self, batch):
images = [image.unsqueeze(0) for image in batch['inputs']]
data_samples = [data_sample for data_sample in batch['data_samples']]
images = torch.cat(images, dim=0).to(get_device())
inputs = {'image': images, 'data_samples': data_samples}
return inputs
@torch.inference_mode()
def generate(self, batch):
max_gen_len = 256
temperature = 0.1
top_p = 0.75
inputs = self.pack_inputs(batch)
inputs = self.prompt_constructor(inputs)
image = inputs['image']
prompts = inputs['prompt']
data_samples = inputs['data_samples']
data_sample = data_samples[0]
prompts = [prompts]
imgs = image
# import pdb;pdb.set_trace()
bsz = len(imgs)
params = self.llama.params
with torch.cuda.amp.autocast():
visual_query = self.forward_visual(imgs)
# import pdb;pdb.set_trace()
if isinstance(prompts[0], str):
prompts = [
self.tokenizer.encode(x, bos=True, eos=False) for x in prompts
]
# import pdb;pdb.set_trace()
min_prompt_size = min([len(t) for t in prompts])
max_prompt_size = max([len(t) for t in prompts])
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
tokens = torch.full((bsz, total_len),
self.tokenizer.pad_id).cuda().long()
# import pdb;pdb.set_trace()
for k, t in enumerate(prompts):
if len(t) <= total_len:
tokens[k, :len(t)] = torch.tensor(t).cuda().long()
else:
tokens[k, :total_len] = torch.tensor(
t[:total_len]).cuda().long()
input_text_mask = tokens != self.tokenizer.pad_id
start_pos = min_prompt_size
prev_pos = 0
for cur_pos in range(start_pos, total_len):
with torch.cuda.amp.autocast():
logits = self.forward(visual_query,
tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
probs = torch.softmax(logits / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits, dim=-1)
next_token = next_token.reshape(-1)
next_token = torch.where(input_text_mask[:, cur_pos],
tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
# trick: early stop if bsz==1
if bsz == 1 and next_token[0] == self.tokenizer.eos_id:
break
prev_pos = cur_pos
decoded = []
for i, t in enumerate(tokens.tolist()):
# cut to max gen len
t = t[len(prompts[i]):len(prompts[i]) + max_gen_len]
# cut to eos tok if any
try:
t = t[:t.index(self.tokenizer.eos_id)]
except ValueError:
pass
decoded.append(self.tokenizer.decode(t))
output_text = self.post_processor(decoded[0])
data_sample.pred_answer = output_text
return data_sample
@MM_MODELS.register_module('LLaMA-adapter-v2')
class LLaMA_adapter_v2(nn.Module):
def __init__(self,
llama_dir,
prompt_constructor: dict,
post_processor: dict,
mode: str = 'generation',
device='cuda' if torch.cuda.is_available() else 'cpu',
download_root='ckpts'):
super().__init__()
name = 'BIAS-7B'
# BIAS-7B or https://xxx/sha256_BIAS-7B.pth -> 7B
llama_type = name.split('.')[0].split('-')[-1]
llama_ckpt_dir = os.path.join(llama_dir, llama_type)
llama_tokenzier_path = os.path.join(llama_dir, 'tokenizer.model')
# load llama_adapter weights and model_cfg
print(f'Loading LLaMA-Adapter from {llama_dir}')
ckpt = torch.load(
f'{llama_dir}/7fa55208379faf2dd862565284101b0e4a2a72114d6490a95e432cf9d9b6c813_BIAS-7B.pth', # noqa: E501
map_location='cpu')
model_cfg = ckpt.get('config', {})
self.model = LLaMA_adapter(
llama_ckpt_dir,
llama_tokenzier_path,
max_seq_len=512,
max_batch_size=1,
clip_model='ViT-L/14',
v_embed_dim=768,
v_depth=8,
v_num_heads=16,
v_mlp_ratio=4.0,
query_len=10,
query_layer=31,
w_bias=model_cfg.get('w_bias', False),
w_lora=model_cfg.get('w_lora', False),
lora_rank=model_cfg.get('lora_rank', 16),
prompt_constructor=prompt_constructor,
post_processor=post_processor,
)
self.model.load_state_dict(ckpt['model'], strict=False)
self.mode = mode
def forward(self, batch):
if self.mode == 'generation':
return self.model.generate(batch)

View File

@ -0,0 +1,15 @@
import torch
class LlamaAadapterMMBenchPostProcessor:
""""Post processor for Llama Aadapter V2 on MMBench."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
if len(output_token) >= 2:
if output_token[1] == '.':
output_token = output_token[2:].strip()
return output_token

View File

@ -0,0 +1,56 @@
from typing import List
from mmpretrain.structures import DataSample
class LlamaAadapterMMBenchPromptConstructor:
"""Prompt constructor for Llama Adapter v2 on MMBench.
Args:
image_prompt (str): Image prompt. Defaults to `''`.
reply_prompt (str): Reply prompt. Defaults to `''`.
"""
def __init__(self, image_prompt: str = '', reply_prompt: str = '') -> None:
self.image_prompt = image_prompt
self.reply_prompt = reply_prompt
def __call__(self, inputs: dict) -> dict:
"""Construct prompt.
Args:
inputs (dict): Input data containing image and data_samples.
Returns:
dict: A dict containing prompt, images and data_samples.
"""
data_samples = inputs['data_samples']
prompt = self._process(data_samples)
inputs.update({'prompt': prompt})
return inputs
def _process(self, data_samples: List[DataSample]) -> str:
"""Process data sample to prompt.
Args:
data_samples (List[DataSample]): A list of data_samples.
Returns:
str: Prompt.
"""
# import pdb;pdb.set_trace()
question = [
data_sample.get('question') for data_sample in data_samples
]
options = [data_sample.get('options') for data_sample in data_samples]
if data_samples[0].get('context') is not None:
context = [
data_sample.get('context') for data_sample in data_samples
]
else:
context = ''
prompts = context + ' ' + question + ' ' + options # noqa
return prompts

View File

@ -0,0 +1,8 @@
from .mplug_owl import MplugOwl
from .post_processor import MplugOwlMMBenchPostProcessor
from .prompt_constructor import MplugOwlMMBenchPromptConstructor # noqa
__all__ = [
'MplugOwl', 'MplugOwlMMBenchPostProcessor',
'MplugOwlMMBenchPromptConstructor'
]

View File

@ -0,0 +1,86 @@
import mmengine
import torch
import torch.nn as nn
from mmengine.device import get_device
# Load via Huggingface Style
from mplug_owl.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl.processing_mplug_owl import (MplugOwlImageProcessor,
MplugOwlProcessor)
from mplug_owl.tokenization_mplug_owl import MplugOwlTokenizer
from opencompass.registry import MM_MODELS
@MM_MODELS.register_module('mplug_owl')
class MplugOwl(nn.Module):
def __init__(self,
prompt_constructor: dict,
post_processor: dict,
model_path='MAGAer13/mplug-owl-llama-7b',
mode: str = 'generation') -> None:
super().__init__()
pretrained_ckpt = model_path
# import pdb;pdb.set_trace()
self.model = MplugOwlForConditionalGeneration.from_pretrained(
pretrained_ckpt,
torch_dtype=torch.bfloat16,
).cuda()
self.image_processor = MplugOwlImageProcessor.from_pretrained(
pretrained_ckpt)
self.tokenizer = MplugOwlTokenizer.from_pretrained(pretrained_ckpt)
self.processor = MplugOwlProcessor(self.image_processor,
self.tokenizer)
self.generate_kwargs = {
'do_sample': False,
'top_k': 5,
'max_length': 20,
'num_beams': 3,
}
self.prompt_constructor = mmengine.registry.build_from_cfg(
prompt_constructor, MM_MODELS)
if post_processor is not None:
self.post_processor = mmengine.registry.build_from_cfg(
post_processor, MM_MODELS)
self.mode = mode
def forward(self, batch):
if self.mode == 'generation':
return self.generate(batch)
def generate(self, batch):
images = [image.unsqueeze(0) for image in batch['inputs']]
data_samples = [data_sample for data_sample in batch['data_samples']]
images = torch.cat(images, dim=0).to(get_device())
inputs = {'image': images, 'data_samples': data_samples}
inputs = self.prompt_constructor(inputs)
image = inputs['image']
prompt = inputs['prompt']
data_samples = inputs['data_samples']
data_sample = data_samples[0]
owl_template = """The following is a conversation
between a curious human and AI assistant.
The assistant gives helpful, detailed, and
polite answers to the user's questions.
Human: <image>
Human: {text_input}
AI: """
prompt = owl_template.format(text_input=prompt)
inputs = self.processor(text=[prompt], return_tensors='pt')
inputs['pixel_values'] = image
# inputs['pixel_values'] = torch.zeros_like(samples['image'])
inputs = {
k: v.bfloat16() if v.dtype == torch.float else v
for k, v in inputs.items()
}
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
with torch.no_grad():
res = self.model.generate(**inputs, **self.generate_kwargs)
output_text = self.tokenizer.decode(res.tolist()[0],
skip_special_tokens=True)
output_text = self.post_processor(output_text)
data_sample.pred_answer = output_text
return data_sample

View File

@ -0,0 +1,17 @@
import re
import torch
class MplugOwlMMBenchPostProcessor:
""""Post processor for MplugOwl on MMBench."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
pattern = re.compile(r'([A-Z]\.)')
res = pattern.findall(output_token)
if len(res) > 0:
output_token = res[0][:-1]
return output_token

View File

@ -0,0 +1,55 @@
from typing import List
from mmpretrain.structures import DataSample
class MplugOwlMMBenchPromptConstructor:
"""Prompt constructor for MplugOwl on MMBench.
Args:
image_prompt (str): Image prompt. Defaults to `''`.
reply_prompt (str): Reply prompt. Defaults to `''`.
"""
def __init__(self, image_prompt: str = '', reply_prompt: str = '') -> None:
self.image_prompt = image_prompt
self.reply_prompt = reply_prompt
def __call__(self, inputs: dict) -> dict:
"""Construct prompt.
Args:
inputs (dict): Input data containing image and data_samples.
Returns:
dict: A dict containing prompt, images and data_samples.
"""
data_samples = inputs['data_samples']
prompt = self._process(data_samples)
inputs.update({'prompt': prompt})
return inputs
def _process(self, data_samples: List[DataSample]) -> str:
"""Process data sample to prompt.
Args:
data_samples (List[DataSample]): A list of data_samples.
Returns:
str: Prompt.
"""
question = [
data_sample.get('question') for data_sample in data_samples
]
options = [data_sample.get('options') for data_sample in data_samples]
if data_samples[0].get('context') is not None:
context = [
data_sample.get('context') for data_sample in data_samples
]
else:
context = ''
prompts = context + ' ' + question + ' ' + options # noqa
return prompts